A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A Kalirin missense mutation enhances dendritic RhoA signaling and leads to regression of cortical dendritic arbors across development. | LitMetric

Normally, dendritic size is established prior to adolescence and then remains relatively constant into adulthood due to a homeostatic balance between growth and retraction pathways. However, schizophrenia is characterized by accelerated reductions of cerebral cortex gray matter volume and onset of clinical symptoms during adolescence, with reductions in layer 3 pyramidal neuron dendritic length, complexity, and spine density identified in multiple cortical regions postmortem. Nogo receptor 1 (NGR1) activation of the GTPase RhoA is a major pathway restricting dendritic growth in the cerebral cortex. We show that the NGR1 pathway is stimulated by OMGp and requires the Rho guanine nucleotide exchange factor Kalirin-9 (KAL9). Using a genetically encoded RhoA sensor, we demonstrate that a naturally occurring missense mutation in , KAL-PT, that was identified in a schizophrenia cohort, confers enhanced RhoA activitation in neuronal dendrites compared to wild-type KAL. In mice containing this missense mutation at the endogenous locus, there is an adolescent-onset reduction in dendritic length and complexity of layer 3 pyramidal neurons in the primary auditory cortex. Spine density per unit length of dendrite is unaffected. Early adult mice with these structural deficits exhibited impaired detection of short gap durations. These findings provide a neuropsychiatric model of disease capturing how a mild genetic vulnerability may interact with normal developmental processes such that pathology only emerges around adolescence. This interplay between genetic susceptibility and normal adolescent development, both of which possess inherent individual variability, may contribute to heterogeneity seen in phenotypes in human neuropsychiatric disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8694055PMC
http://dx.doi.org/10.1073/pnas.2022546118DOI Listing

Publication Analysis

Top Keywords

missense mutation
12
cerebral cortex
8
layer pyramidal
8
dendritic length
8
length complexity
8
spine density
8
dendritic
6
kalirin missense
4
mutation enhances
4
enhances dendritic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!