Predicting and organizing patterns of events is important for humans to survive in a dynamically changing world. The motor system has been proposed to be actively, and necessarily, engaged in not only the production but the perception of rhythm by organizing hierarchical timing that influences auditory responses. It is not yet well understood how the motor system interacts with the auditory system to perceive and maintain hierarchical structure in time. This study investigated the dynamic interaction between auditory and motor functional sources during the perception and imagination of musical meters. We pursued this using a novel method combining high-density EEG, EMG, and motion capture with independent component analysis to separate motor and auditory activity during meter imagery while robustly controlling against covert movement. We demonstrated that endogenous brain activity in both auditory and motor functional sources reflects the imagination of binary and ternary meters in the absence of corresponding acoustic cues or overt movement at the meter rate. We found clear evidence for hypothesized motor-to-auditory information flow at the beat rate in all conditions, suggesting a role for top-down influence of the motor system on auditory processing of beat-based rhythms, and reflecting an auditory-motor system with tight reciprocal informational coupling. These findings align with and further extend a set of motor hypotheses from beat perception to hierarchical meter imagination, adding supporting evidence to active engagement of the motor system in auditory processing, which may more broadly speak to the neural mechanisms of temporal processing in other human cognitive functions. Humans live in a world full of hierarchically structured temporal information, the accurate perception of which is essential for understanding speech and music. Music provides a window into the brain mechanisms of time perception, enabling us to examine how the brain groups musical beats into, for example a march or waltz. Using a novel paradigm combining measurement of electrical brain activity with data-driven analysis, this study directly investigates motor-auditory connectivity during meter imagination. Findings highlight the importance of the motor system in the active imagination of meter. This study sheds new light on a fundamental form of perception by demonstrating how auditory-motor interaction may support hierarchical timing processing, which may have clinical implications for speech and motor rehabilitation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8802922 | PMC |
http://dx.doi.org/10.1523/JNEUROSCI.1121-21.2021 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!