Mutations in some cell adhesion molecules (CAMs) cause abnormal synapse formation and maturation, and serve as one of the potential mechanisms of autism spectrum disorders (ASDs). Recently, (Down syndrome cell adhesion molecule) was found to be a high-risk gene for autism. However, it is still unclear how DSCAM contributes to ASD. Here, we show that DSCAM expression was downregulated following synapse maturation, and that DSCAM deficiency caused accelerated dendritic spine maturation during early postnatal development. Mechanistically, the extracellular domain of DSCAM interacts with neuroligin1 (NLGN1) to block the NLGN1-neurexin1β (NRXN1β) interaction. DSCAM extracellular domain was able to rescue spine overmaturation in knockdown neurons. Precocious spines in DSCAM-deficient mice showed increased glutamatergic transmission in the developing cortex and induced autism-like behaviors, such as social novelty deficits and repetitive behaviors. Thus, DSCAM might be a repressor that prevents premature spine maturation and excessive glutamatergic transmission, and its deficiency could lead to autism-like behaviors. Our study provides new insight into the potential pathophysiological mechanisms of ASDs. is not only associated with Down syndrome but is also a strong autism risk gene based on large-scale sequencing analysis. However, it remains unknown exactly how DSCAM contributes to autism. In mice, either neuron- and astrocyte-specific or pyramidal neuron-specific DSCAM deficiencies resulted in autism-like behaviors and enhanced spatial memory. In addition, DSCAM knockout or knockdown in pyramidal neurons led to increased dendritic spine maturation. Mechanistically, the extracellular domain of DSCAM binds to NLGN1 and inhibits NLGN1-NRXN1β interaction, which can rescue abnormal spine maturation induced by DSCAM deficiency. Our research demonstrates that DSCAM negatively modulates spine maturation, and that DSCAM deficiency leads to excessive spine maturation and autism-like behaviors, thus providing new insight into a potential pathophysiological mechanism of autism.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8805618 | PMC |
http://dx.doi.org/10.1523/JNEUROSCI.1003-21.2021 | DOI Listing |
Neurobiol Dis
January 2025
Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada. Electronic address:
The consequences of non-pathogenic huntingtin (HTT) reduction in the mature brain are of substantial importance as clinical trials for numerous HTT-lowering therapies are underway; many of which are non-selective in that they reduce both mutant and wild type protein variants. In this study, we injected CaMKII-promoted AAV-Cre directly into the hippocampus of adult HTT floxed mice to explore the role of wild-type huntingtin (wtHTT) in adult hippocampal pyramidal neurons and the broader implications of its loss. Our findings reveal that wtHTT depletion results in profound macroscopic morphological abnormalities in hippocampal structure, accompanied by significant reactive gliosis.
View Article and Find Full Text PDFBiomimetics (Basel)
January 2025
Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA.
The surface topography and chemistry of titanium-aluminum-vanadium (Ti6Al4V) implants play critical roles in the osteoblast differentiation of human bone marrow stromal cells (MSCs) and the creation of an osteogenic microenvironment. To assess the effects of a microscale/nanoscale (MN) topography, this study compared the effects of MN-modified, anodized, and smooth Ti6Al4V surfaces on MSC response, and for the first time, directly contrasted MN-induced osteoblast differentiation with culture on tissue culture polystyrene (TCPS) in osteogenic medium (OM). Surface characterization revealed distinct differences in microroughness, composition, and topography among the Ti6Al4V substrates.
View Article and Find Full Text PDFSpine Deform
January 2025
The Medical School, University of Sheffield, Beech Hill Road, Sheffield, S10 2RX, UK.
Purpose: Treating idiopathic Early Onset Scoliosis (idiopathic EOS) is challenging due to ongoing growth and extensive follow-ups. While bracing is effective for Adolescent Idiopathic Scoliosis (AIS), its value for children under 10 remains debated. This systematic review and meta-analysis evaluates the effectiveness of spinal bracing in idiopathic EOS, followed to skeletal maturity.
View Article and Find Full Text PDFMacromol Biosci
January 2025
College of Life Science and Technology, Jinan University, Guangzhou, 510630, China.
The challenge of nerve regeneration stems from the diminished vitality of mature neurons post-injury. The construction of a suitable microenvironment at the injury site to facilitate axonal regeneration is a crucial aspect of nerve injury repair. In this work, a conductive and biocompatible composite material, CP/HA/HGF, is designed by grafting polypyrrole onto chitosan and compounding it with hyaluronic acid and functional short peptides for neural regeneration.
View Article and Find Full Text PDFMed Biol Eng Comput
January 2025
School of Information, Yunnan University, East Outer Ring South Road, Kunming, 650504, China.
Adolescent idiopathic scoliosis (AIS) is a three-dimensional spine deformity governed of the spine. A child's Risser stage of skeletal maturity must be carefully considered for AIS evaluation and treatment. However, there are intra-observer and inter-observer inaccuracies in the Risser stage manual assessment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!