The nuclear RNA exosome plays a key role in controlling the levels of multiple protein-coding and non-coding RNAs. Recruitment of the exosome to specific RNA substrates is mediated by RNA-binding co-factors. The transient interaction between co-factors and the exosome as well as the rapid decay of RNA substrates make identification of exosome co-factors challenging. Here, we use comparative poly(A)+ RNA interactome capture in fission yeast expressing three different mutants of the exosome to identify proteins that interact with poly(A)+ RNA in an exosome-dependent manner. Our analyses identify multiple RNA-binding proteins whose association with RNA is altered in exosome mutants, including the zinc-finger protein Mub1. Mub1 is required to maintain the levels of a subset of exosome RNA substrates including mRNAs encoding for stress-responsive proteins. Removal of the zinc-finger domain leads to loss of RNA suppression under non-stressed conditions, altered expression of heat shock genes in response to stress, and reduced growth at elevated temperature. These findings highlight the importance of exosome-dependent mRNA degradation in buffering gene expression networks to mediate cellular adaptation to stress.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8645331 | PMC |
http://dx.doi.org/10.26508/lsa.202101111 | DOI Listing |
Cell Rep
January 2025
Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA; The Brain Tumor Center, Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO 63110, USA. Electronic address:
Mutation or deletion of the deubiquitinase USP7 causes Hao-Fountain syndrome (HAFOUS), which is characterized by speech delay, intellectual disability, and aggressive behavior and highlights important unknown roles of USP7 in the nervous system. Here, we conditionally delete USP7 in glutamatergic neurons in the mouse forebrain, triggering disease-relevant phenotypes, including sensorimotor deficits, impaired cognition, and aggressive behavior. Although USP7 deletion induces p53-dependent neuronal apoptosis, most behavioral abnormalities in USP7 conditional knockout mice persist following p53 loss.
View Article and Find Full Text PDFBiology (Basel)
January 2025
Division of Thoracic Surgery, Cantonal Hospital Lucerne, 6000 Lucerne, Switzerland.
In 2001, two enzyme-encoding genes were recognized in the fruit fly . The genetic material, labeled and , encodes ribonuclease-type enzymes with slightly diverse target substrates. The human orthologue is .
View Article and Find Full Text PDFSci Adv
January 2025
Simpson Querrey Institute for Epigenetics, Department of Biochemistry and Molecular Genetics Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
The stability of RNA polymerase II (Pol II) is tightly regulated during transcriptional elongation for proper control of gene expression. Our recent studies revealed that promoter-proximal Pol II is destabilized via the ubiquitin E3 ligase cullin 3 (CUL3) upon loss of transcription elongation factor SPT5. Here, we investigate how CUL3 recognizes chromatin-bound Pol II as a substrate.
View Article and Find Full Text PDFChembiochem
January 2025
Institut Pasteur, Department of Structural Biology and Chemistry, 28 Rue du Dr. Roux, 75015, Paris, FRANCE.
Access to synthetic oligonucleotides is crucial for applications in diagnostics, therapeutics, synthetic biology, and nanotechnology. Traditional solid phase synthesis is limited by sequence length and complexities, low yields, high costs and poor sustainability. Similarly, polymerase-based approaches such as in vitro transcription and primer extension reactions do not permit any control on the positioning of modifications and display poor substrate tolerance.
View Article and Find Full Text PDFJ Fungi (Basel)
December 2024
College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China.
Periodic mycelial subculture is a method commonly used for the storage of edible mushrooms, but excessive subculturing can lead to the degeneration of strains. In this study, the strain V971(M0) was successively subcultured on PDA medium every 4 days, and one generation of strains was preserved every 4 months. Thus, five generations of subcultured strains (M1-M5) were obtained after 20 months of mycelial subculturing, their production traits were determined, and transcriptomic analysis was performed using RNA-seq; the differentially expressed genes were verified via RT-qPCR.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!