Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Speech recognition in noisy environments is a challenge for both cochlear implant (CI) users and device manufacturers. CI manufacturers have been investing in technological innovations for processors and researching strategies to improve signal processing and signal design for better aesthetic acceptance and everyday use.
Purpose: This study aimed to compare speech recognition in CI users using off-the-ear (OTE) and behind-the-ear (BTE) processors.
Design: A cross-sectional study was conducted with 51 CI recipients, all users of the BTE Nucleus 5 (CP810) sound processor. Speech perception performances were compared in quiet and noisy conditions using the BTE sound processor Nucleus 5 (N5) and OTE sound processor Kanso. Each participant was tested with the Brazilian-Portuguese version of the hearing in noise test using each sound processor in a randomized order. Three test conditions were analyzed with both sound processors: (i) speech level fixed at 65 decibel sound pressure level in a quiet, (ii) speech and noise at fixed levels, and (iii) adaptive speech levels with a fixed noise level. To determine the relative performance of OTE with respect to BTE, paired comparison analyses were performed.
Results: The paired -tests showed no significant difference between the N5 and Kanso in quiet conditions. In all noise conditions, the performance of the OTE (Kanso) sound processor was superior to that of the BTE (N5), regardless of the order in which they were used. With the speech and noise at fixed levels, a significant mean 8.1 percentage point difference was seen between Kanso (78.10%) and N5 (70.7%) in the sentence scores.
Conclusion: CI users had a lower signal-to-noise ratio and a higher percentage of sentence recognition with the OTE processor than with the BTE processor.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1055/s-0041-1735252 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!