Integrated cost and environmental impact assessment of management options for dredged sediment.

Waste Manag

Swedish National Road and Transport Research Institute (VTI), Malvinas väg 6, Stockholm SE-114 28, Sweden; Department of Architecture and Civil Engineering, Division of Geology and geotechnics, Chalmers University of Technology, Gothenburg SE-412 96, Sweden.

Published: February 2022

Large quantities of sediment must be dredged regularly to enable marine transport and trade. The sediments are often polluted, with e.g. metals, which limits the management options. The aim of this study has been to assess costs and environmental impacts (impact on climate, marine organisms, etc.) of different management options for polluted dredged sediment, by combining life-cycle assessment (LCA) of the climate impact, scoring of other environmental aspects and a cost evaluation. This approach has been used to study both traditional and new management alternatives for a real port case. The studied options include landfilling, deep-sea disposal, construction of a port area using a stabilization and solidification (S/S) method, and a combination of the aforementioned methods with the innovative option of metal recovery through sediment electrolysis. The LCA showed that deep-sea disposal had the lowest climate impact. The assessment of the other environmental impacts showed that the result varied depending on the pollution level and the time perspective used (short or long-term). Using sediment for construction had the highest climate impact, although other environmental impacts were comparably low. Electrolysis was found to be suitable for highly polluted sediments, as it left the sediment cleaner and enabled recovery of precious metals, however the costs were high. The results highlight the complexity of comparing different environmental impacts and the benefits of using integrated assessments to provide clarity, and to evaluate both the synergetic and counteracting effects associated with the investigated scenarios and may aid early-stage decision making.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.wasman.2021.11.031DOI Listing

Publication Analysis

Top Keywords

environmental impacts
16
management options
12
climate impact
12
impact assessment
8
dredged sediment
8
deep-sea disposal
8
environmental
6
sediment
6
impact
5
integrated cost
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!