The MYCN oncoprotein drives the development of numerous neuroendocrine and pediatric tumors. Here we show that MYCN interacts with the nuclear RNA exosome, a 3'-5' exoribonuclease complex, and recruits the exosome to its target genes. In the absence of the exosome, MYCN-directed elongation by RNA polymerase II (RNAPII) is slow and non-productive on a large group of cell-cycle-regulated genes. During the S phase of MYCN-driven tumor cells, the exosome is required to prevent the accumulation of stalled replication forks and of double-strand breaks close to the transcription start sites. Upon depletion of the exosome, activation of ATM causes recruitment of BRCA1, which stabilizes nuclear mRNA decapping complexes, leading to MYCN-dependent transcription termination. Disruption of mRNA decapping in turn activates ATR, indicating transcription-replication conflicts. We propose that exosome recruitment by MYCN maintains productive transcription elongation during S phase and prevents transcription-replication conflicts to maintain the rapid proliferation of neuroendocrine tumor cells.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.molcel.2021.11.002DOI Listing

Publication Analysis

Top Keywords

transcription-replication conflicts
12
rna polymerase
8
tumor cells
8
mrna decapping
8
exosome
7
mycn
4
mycn recruits
4
recruits nuclear
4
nuclear exosome
4
exosome complex
4

Similar Publications

Among the Poly(ADP-ribose) Polymerase (PARP) family in mammals, PARP1 is the first identified and well-studied member that plays a critical role in DNA damage repair and has been proven to be an effective target for cancer therapy. Here, we have reviewed not only the role of PARP1 in different DNA damage repair pathways, but also the working mechanisms of several PARP inhibitors (PARPi), inhibiting Poly-ADP-ribosylation (PARylation) processing and PAR chains production to trap PARP1 on impaired DNA and inducing Transcription- replication Conflicts (TRCs) by inhibiting the PARP1 activity. This review has systematically summarized the latest clinical application of six authorized PARPi, including olaparib, rucaparib, niraparib, talazoparib, fuzuloparib and pamiparib, in monotherapy and combination therapies with chemotherapy, radiotherapy, and immunotherapy, in different kinds of cancer.

View Article and Find Full Text PDF

A synthetic methylotroph achieves accelerated cell growth by alleviating transcription-replication conflicts.

Nat Commun

January 2025

School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wux, China.

Microbial utilization of methanol for valorization is an effective way to advance green bio-manufacturing technology. Although synthetic methylotrophs have been developed, strategies to enhance their cell growth rate and internal regulatory mechanism remain underexplored. In this study, we design a synthetic methanol assimilation (SMA) pathway containing only six enzymes linked to central carbon metabolism, which does not require energy and carbon emissions.

View Article and Find Full Text PDF

Flaviviruses, which include globally impactful pathogens, such as West Nile virus, yellow fever virus, Zika virus, Japanese encephalitis virus, and dengue virus, contribute significantly to human infections. Despite the ongoing emergence and resurgence of flavivirus-mediated pathogenesis, the absence of specific therapeutic options remains a challenge in the prevention and treatment of flaviviral infections. Through the intricate processes of fusion, transcription, replication, and maturation, the complex interplay of viral and host metabolic interactions affects pathophysiology.

View Article and Find Full Text PDF

Roles of CDK12 mutations in PCa development and treatment.

Biochim Biophys Acta Rev Cancer

December 2024

Department of Urology, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Genitourinary Cancer Institute, Shanghai 200032, China. Electronic address:

Prostate cancer (PCa) is one of the most common cancers in men, and cyclin-dependent kinase 12 (CDK12) is emerging as a novel star player in the PCa tumorigenesis and progression to castration-resistant prostate cancer (CRPC). In PCa, CDK12 alterations are mostly loss-of-function mutations featuring intronic polyadenylation (IPA), focal tandem duplications (FTDs), and R-loops formation and transcription-replication conflicts (TRCs). The occurrence of IPA can result in homologous recombination deficiency (HRD) and androgen receptor (AR) variation.

View Article and Find Full Text PDF

After 4 years of the COVID-19 pandemic, SARS-CoV-2 continues to circulate with epidemic waves caused by evolving new variants. Although the rapid development of vaccines and approved antiviral drugs has reduced virus transmission and mitigated the symptoms of infection, the continuous emergence of new variants and the lack of simple-use (non-hospitalized, easy timing, local delivery, direct acting, and host-targeting) treatment modalities have limited the effectiveness of COVID-19 vaccines and drugs. Therefore, novel therapeutic approaches against SARS-CoV-2 infection are still urgently needed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!