Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Existing no-reference (NR) image quality assessment (IQA) metrics are still not convincing for evaluating the quality of the camera-captured images. Toward tackling this issue, we, in this article, establish a novel NR quality metric for quantifying the quality of the camera-captured images reliably. Since the image quality is hierarchically perceived from the low-level preliminary visual perception to the high-level semantic comprehension in the human brain, in our proposed metric, we characterize the image quality by exploiting both the low-level image properties and the high-level semantics of the image. Specifically, we extract a series of low-level features to characterize the fundamental image properties, including the brightness, saturation, contrast, noiseness, sharpness, and naturalness, which are highly indicative of the camera-captured image quality. Correspondingly, the high-level features are designed to characterize the semantics of the image. The low-level and high-level perceptual features play complementary roles in measuring the image quality. To infer the image quality, we employ the support vector regression (SVR) to map all the informative features to a single quality score. Thorough tests conducted on two standard camera-captured image databases demonstrate the effectiveness of the proposed quality metric in assessing the image quality and its superiority over the state-of-the-art NR quality metrics. The source code of the proposed metric for camera-captured images is released at https://github.com/YT2015?tab=repositories.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TCYB.2021.3128023 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!