Cetuximab, an epidermal growth factor receptor (EGFR)-targeting antibody, remains the only Food and Drug Administration-approved targeted therapy for squamous cell carcinoma (SCC) of head and neck/esophagus. However, in clinical trials, cetuximab only benefited a subset of patients and frequently caused toxicity. Predicting which patients respond to cetuximab remains unsolved. The authors sought to identify predictive biomarkers in EGFR signaling and autophagy pathways, which may be impacted by cetuximab under certain treatment conditions. responses of SCC cell lines to cetuximab under various nutrient conditions were assessed by WST-8 growth assay. Functional profiles of several EGFR signaling biomarkers were investigated by Luminex-based assays and corroborated with immunoblots. Autophagy markers were analyzed with immunoblots. growth response assays identified cetuximab responder and nonresponder cell lines. Optimal growth conditions and growth factors enhanced responses, and even reversed nonresponsiveness in some cell lines. Strong correlation was found between response in growth assays (reference assay) and dynamic changes in p-Erk1/2 and LC3-II (index assays). This study indicates that nutrient modification may enhance cetuximab response in SCC patients. Biomarker results strengthen the hypothesis that dynamic biomarkers can be used to predict patient response to cetuximab. Future studies are warranted to test in more complex samples including patient-derived tumor tissues.

Download full-text PDF

Source
http://dx.doi.org/10.1089/cbr.2021.0283DOI Listing

Publication Analysis

Top Keywords

cell lines
12
cetuximab
9
squamous cell
8
cell carcinoma
8
cetuximab response
8
response cetuximab
8
egfr signaling
8
growth
6
cell
5
response
5

Similar Publications

Objectives: PD15, a novel natural steroidal saponin extracted from the rhizomes of Paris delavayi Franchet, has demonstrated a strong cytotoxic effect against HepG2 and U87MG cells. However, its therapeutic effects on colorectal cancer (CRC) and the underlying molecular mechanisms remain unclear.

Methods: MTT assay, clonogenic assay, Hoechst 33258 staining, flow cytometry, molecular docking, and western blot were used to investigate the mechanism of PD15 in HCT116 cell lines.

View Article and Find Full Text PDF

Purpose: Mobocertinib is an oral epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor that targets exon 20 insertion (ex20ins) mutations in non-small cell lung cancer (NSCLC). This open-label, phase III trial (EXCLAIM-2: ClinicalTrials.gov identifier: NCT04129502) compared mobocertinib versus platinum-based chemotherapy as first-line treatment of ex20ins+ advanced/metastatic NSCLC.

View Article and Find Full Text PDF

The stone marten (Martes foina) is an important species for cytogenetic studies in the order Carnivora. ZooFISH probes created from its chromosomes provided a strong and clean signal in chromosome painting experiments and were valuable for studying the evolution of carnivoran genome architecture. The research revealed that the stone marten chromosome set is similar to the presumed ancestral karyotype of the Carnivora, which added an additional value for the species.

View Article and Find Full Text PDF

Exposure to influenza A virus (IAV), respiratory syncytial virus (RSV), and human metapneumovirus (hMPV) is well-known to increase the risk of pneumonia in humans. Type I interferon (IFN-I) is a hallmark response to acute viral infections, and alveolar macrophages (AMs) constitute the first line of airway defense against opportunistic bacteria. Our study reveals that virus-induced IFN-I receptor (IFNAR1) signaling directly impairs AM-dependent antibacterial protection.

View Article and Find Full Text PDF

Objective: This study aimed to investigate the role of transmembrane emp24 domain-containing protein 2 (TMED2) in oral squamous cell carcinoma (OSCC).

Methodology: A bioinformatics analysis was first conducted to explore TMED2 expression in OSCC and its relation with overall survival. The analysis results were further verified by assessing TMED2 expression levels in human normal oral keratinocyte cells and human OSCC cell lines using quantitative real-time polymerase chain reaction and the Western blot.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!