5-Hydroxytryptamine (5-HT) is an important neurotransmitter, and its content in the human body is of great significance to human health. In this study, an l-cysteine-terminated triangular silver nanoplate loaded on a MXene (two-dimensional transition metal carbide or nitride) (Tri-AgNP/l-Cys/MXene) electrochemical sensor was used to detect 5-HT. As an electrically active amino acid with a sulfhydryl group, l-cysteine (l-Cys) forms a more stable Ag-S bond with silver nanoparticles, which can selectively substitute trisodium citrate (TSC) in TSC-capped triangular silver nanoplates (Tri-Ag-NP/TSC). Due to the good conductivity, biocompatibility, and large surface area, MXenes provide a good platform for loading Tri-AgNP/l-Cys. Under optimized conditions, the concentration range for detecting 5-HT with the sensor is 0.5-150 μM, and the limit of detection (LOD) is 0.08 μM (S/N = 3). For detecting 5-HT in actual serum samples, the sensor also showed a good recovery rate (95.38-102.3%), and the relative standard deviation was 2.2-3.4%.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.analchem.1c04218 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!