Background: Noncatalytic region of tyrosine kinase 1 (NCK1) plays a key role in extracellular matrix degradation, which is required for the metastasis of triple-negative breast cancer (TNBC). However, the role NCK1 plays in the metastatic progression of TNBC is unknown.
Methods And Results: Based on online databases, NCK1 was found to be highly expressed in TNBC as compared to normal breast-like subjects, which was also confirmed using TNBC cells and a tissue microarray. NCK1 expression gradually decreased with increased tumor stage. High NCK1 expression displayed a poor prognosis in lymph node-positive metastatic TNBC patients, but not in lymph node-negative patients. Using transwell assays and immunoblotting, we confirmed that NCK1 overexpression promoted, while NCK1 downregulation inhibited migration capabilities, as well as the expression of matrix metalloproteinases (MMP2/9), uridylyl phosphate adenosine, and plasminogen activator inhibitor-1 in TNBC cells. Mechanistically, NCK1 upregulation mediated the activation of MMP2/9 through ERK1/2 activity. Signal transducer and activator of transcription 3 (STAT3) was positively correlated with NCK1. STAT3 could directly bind to the promoter region of NCK1 to promote its expression and was accompanied by the elevation of MMP2/9 and ERK1/2 signaling, which were partially abolished by the knockdown of NCK1 in TNBC cells.
Conclusions: NCK1 may serve as a diagnostic and prognostic marker of metastatic TNBC. STAT3 upregulation promoted the expression of NCK1, which subsequently induced the migration and activity of MMPs in a ERK1/2 signaling-dependent manner in TNBC cells. NCK1 is a promising target for improving TNBC migration.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11033-021-06868-y | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!