Inflammasome activation in neurodegenerative diseases.

Essays Biochem

Department of Neurodegenerative Disease and Geriatric Psychiatry/Neurology, University of Bonn Medical Center, Bonn 53127, Germany.

Published: December 2021

Approximately ten million people are diagnosed with dementia annually since they experience difficulties with memory and thinking skills. Since neurodegenerative diseases are diagnosed late, most of them are difficult to treat. This is due to the increased severity of the disease during the progression when neuroinflammation plays a critical role. The activation of immune cells, especially microglia, plays a crucial role in the development of neurodegenerative diseases. Molecular sensors within these microglia, such as the NLRP3 inflammasome, are activated by signals that represent the hallmarks of neurodegenerative diseases. Here, we first summarize the two activation steps of NLRP3 inflammasome activation. Furthermore, we discuss the key factors that contribute to NLRP3 inflammasome activation in the different neuroinflammatory diseases, like Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS). The prominent NLRP3 inflammasome triggers include amyloid β and tau oligomers in AD, α-synuclein in PD, and superoxide dismutase (SOD1) and TAR DNA-binding protein 43 (TDP43) in ALS. NLRP3 inhibitor treatment has shown promising results in several preclinical mouse models of AD, PD, and ALS. Finally, we postulate that current understandings underpin the potential for NLRP3 inhibitors as a therapeutic target in neurodegenerative diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1042/EBC20210021DOI Listing

Publication Analysis

Top Keywords

neurodegenerative diseases
20
nlrp3 inflammasome
16
inflammasome activation
12
diseases
6
nlrp3
6
inflammasome
5
neurodegenerative
5
activation neurodegenerative
4
diseases ten
4
ten people
4

Similar Publications

Controlling hypertension has become an important issue in the elderly population in whom neurological comorbidities are highly prevalent. Most of the large-scale trials focusing on hypertension management in older populations have excluded patients with comorbid neurological disorders. However, this population requires special considerations, as the benefits of antihypertensive agents are mostly uncertain and there is a higher risk of adverse events.

View Article and Find Full Text PDF

Abnormal tau phosphorylation is a key mechanism in neurodegenerative diseases. Evidence implicates infectious agents, such as Herpes Simplex Virus 1 (HSV-1), as co-factors in the onset or the progression of neurodegenerative diseases, including Alzheimer's disease. This has led to divergence in the field regarding the contribution of viruses in the etiology of neurodegenerative diseases.

View Article and Find Full Text PDF

In vivo imaging markers of glymphatic dysfunction in amyotrophic lateral sclerosis: Analysis of ALPS index and choroid plexus volume.

J Neurol Sci

January 2025

Department of Neurology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea. Electronic address:

Background: The glymphatic system, essential for brain waste clearance, has been implicated in neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). Emerging imaging markers, such as the analysis along the perivascular space (ALPS) index and choroid plexus volume (CPV), may provide insights into glymphatic function, but their relevance to ALS remains unclear.

Objective: To assess glymphatic dysfunction in ALS patients using the ALPS index and CPV.

View Article and Find Full Text PDF

Parkinson's disease (PD), a neurodegenerative disorder without cure, is characterized by the pathological aggregation of α-synuclein (α-Syn) in Lewy bodies. Classic deposition pathway and condensation pathway contribute to α-Syn aggregation, and liquid-liquid phase separation is the driving force for condensate formation, which subsequently undergo liquid-solid phase separation to form toxic fibrils. Traditional Chinese Medicine (TCM) has a long history in treating neurodegenerative disease, herein; we identified chemicals from herbs that inhibit α-Syn aggregation.

View Article and Find Full Text PDF

Can microbiota gut-brain axis reverse neurodegenerative disorders in human?

Ageing Res Rev

January 2025

Medical Science and Technology Innovation Center, Shandong Key Laboratory of Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, Shandong 250117, P R China; School of Medicine and Allied Health Sciences, University of The Gambia; Department of Medical Microbiology, Central South University Changsha, Hunan Provinces, China. Electronic address:

The trillions of microbial populations residing in the gut have recently shown that they can be used as a remedy for various diseases. The gut microbiota-brain-axis interface is one unique pathway that the microbiota demonstrates its medicinal value. This medicinal value is further seen when there is a decline in gut microbial diversity (dysbiosis).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!