A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Modulating the electrocatalytic CO reduction performances of bismuth nanoparticles with carbon substrates with controlled degrees of oxidation. | LitMetric

Modulating the electrocatalytic CO reduction performances of bismuth nanoparticles with carbon substrates with controlled degrees of oxidation.

Nanoscale

Ministry of Education Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Technology Research Institute (Jinan), School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China.

Published: December 2021

The catalytic performances of metal nanoparticles can be widely tuned and promoted by the metal-support interactions. Here, we report that the morphologies and electrocatalytic CO reduction reaction (CORR) properties of bismuth nanoparticles (BiNPs) can be rationally modulated by their interactions with carbon black (CB) supports by controlling the degree of surface oxidation. Appropriately oxidized CB supports can provide sufficient oxygen-containing groups for anchoring BiNPs with tunable sizes and surface areas, desirable key intermediate adsorption abilities, appropriate surface wettability, and adequate electron transfer abilities. As a result, the optimized Bi/CB catalysts exhibited a promoted CORR performance with a Faradaic efficiency of 94% and a current density of 16.7 mA cm for HCOO at -0.9 V a reversible hydrogen electrode. Our results demonstrate the significance of regulating the interactions between supports and metal nanoparticles for both synthesis of the catalyst and electrolysis applications, which may find broader applicability in more electrocatalyst designs.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d1nr05793fDOI Listing

Publication Analysis

Top Keywords

electrocatalytic reduction
8
bismuth nanoparticles
8
metal nanoparticles
8
modulating electrocatalytic
4
reduction performances
4
performances bismuth
4
nanoparticles
4
nanoparticles carbon
4
carbon substrates
4
substrates controlled
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!