A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 144

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 144
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 212
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1002
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3142
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Visible-blind ultraviolet narrowband photomultiplication-type organic photodetector with an ultrahigh external quantum efficiency of over 1 000 000. | LitMetric

Visible-blind ultraviolet narrowband photomultiplication-type organic photodetector with an ultrahigh external quantum efficiency of over 1 000 000.

Mater Horiz

Center for Aggregation-Induced Emission, Institute of Polymer Optoelectronic Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, People's Republic of China.

Published: August 2021

A visible-blind ultraviolet (UV) photodetector can detect UV signals and is not interfered with by visible light or infrared light in the environment. In order to realize high-performance visible-blind UV organic photodetectors (OPDs), we design photomultiplication-type (PM-type) OPDs by using a novel strategy. Firstly, wide bandgap organic semiconductor materials, which do not absorb visible light, are selected as donors to absorb UV light. Secondly, a very small amount of C is used as an acceptor to trap photogenerated electrons. These accumulating electrons near the Al electrode form a potential, which leads to band bending and narrowing of the interface barrier, thereby assisting hole-tunneling injection to form a multiplication. The fabricated visible-blind UV PM-type OPDs with donor/acceptor doping ratio of 50 : 1 exhibit a narrowband response with full-width at half-maximum (FWHM) of approximately 36 nm, an ultrahigh external quantum efficiency of 1.08 × 10% and a remarkable specific detectivity of 1.28 × 10 jones at 335 nm wavelength under -14 V bias. The UV-to-visible rejection ratio exceeds 10 by adjusting the donor/acceptor mixing ratios. The devices made with other wide bandgap organic materials also showed similar performance, indicating that this device structure provides an effective method for the preparation of high-performance visible-blind UV PM-type OPDs. In addition, we prepared a flexible visible-blind UV PM-type OPD based on a PET substrate and integrated it with a flexible OLED to fabricate a wearable UV monitor, which can visually detect the intensity of UV light.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d1mh00776aDOI Listing

Publication Analysis

Top Keywords

pm-type opds
12
visible-blind pm-type
12
visible-blind ultraviolet
8
ultrahigh external
8
external quantum
8
quantum efficiency
8
visible light
8
high-performance visible-blind
8
wide bandgap
8
bandgap organic
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!