Stem cell dysfunction is a hallmark of aging. Much recent study suggests that epigenetic changes play a critical role in the loss of stem cell function with age. However, the underlying mechanisms require elucidation. A recent report describes a process by which mild mitochondrial stress associated with aging causes lysosomal-mediated decreases in CiC, the mitochondrial citrate transporter, in bone marrow-derived mesenchymal stem cells (MSCs). This, in turn, results in a deficit of acetyl-CoA in the nucleus and hypoacetylation of histones. The altered epigenome results in skewered stem cell differentiation favoring adipogenesis and disfavoring osteogenesis, which is problematic given the role the MSCs play in maintaining the integrity of bone tissue. Restoration of nuclear acetyl-CoA by either ectopic expression of CiC or acetate supplementation of MSCs in culture rejuvenates the MSC, restoring the potential to efficiently differentiate along the osteogenic lineage. Citrate, which has recently been reported to extend lifespan in Drosophila, chemically incorporates acetyl-CoA and may prove useful to restore cytoplasmic and nuclear acetyl-CoA levels. The general applicability of the CiC defect in old cells, particularly stem cells, should be established.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1089/rej.2021.0076 | DOI Listing |
Eur J Clin Pharmacol
December 2024
Department of Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China.
Purpose: Voriconazole (VRC) is recommended for the prevention and treatment of invasive fungal infections in children undergoing hematopoietic stem cell transplantation (HSCT). It demonstrates nonlinear pharmacokinetics (PK) and exhibits substantial inter- and intraindividual variability. Phenytoin sodium (PHT) and methylprednisolone (MP) are commonly used in the early stages of HSCT to prevent epilepsy and graft-versus-host disease.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Laboratoire de Physique Théorique et Modélisation, CY Cergy Paris Université, CNRS, UMR 8089, 95302 Cergy-Pontoise cedex, France.
Despite the fact that neural dynamics is triggered by discrete synaptic events, the neural response is usually obtained within the diffusion approximation representing the synaptic inputs as Gaussian noise. We derive a mean-field formalism encompassing synaptic shot noise for sparse balanced neural networks. For low (high) excitatory drive (inhibitory feedback) global oscillations emerge via continuous or hysteretic transitions, correctly predicted by our approach, but not from the diffusion approximation.
View Article and Find Full Text PDFParasitol Res
December 2024
Institute of Hygiene and Microbiology, University of Würzburg, Josef-Schneider-Strasse 2, 97080, Würzburg, Germany.
Pluripotent somatic stem cells are the drivers of unlimited growth of Echinococcus multilocularis metacestode tissue within the organs of the intermediate host. To understand the dynamics of parasite proliferation within the host, it is therefore important to delineate basic mechanisms of Echinococcus stem cell maintenance and differentiation. We herein undertake the first step towards characterizing the role of an evolutionarily old metazoan cell-cell communication system, delta/notch signalling, in Echinococcus cell fate decisions.
View Article and Find Full Text PDFJ Clin Immunol
December 2024
Pediatric Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, University of Bologna, Bologna, Italy.
Background: Activated Phosphoinositide 3-Kinase (PI3K) δ Syndrome (APDS), an inborn error of immunity due to upregulation of the PI3K pathway, leads to recurrent infections and immune dysregulation (lymphoproliferation and autoimmunity).
Methods: Clinical and genetic data of 28 APDS patients from 25 unrelated families were collected from fifteen Italian centers.
Results: Patients were genetically confirmed with APDS-1 (n = 20) or APDS-2 (n = 8), with pathogenic mutations in the PIK3CD or PIK3R1 genes.
Methods Mol Biol
December 2024
Department of Experimental Medicine, Biotechnology, and Molecular Biology Section, Luigi Vanvitelli Campania University, Naples, Italy.
Mesenchymal stromal cells (MSCs) are a heterogeneous population of non-hematopoietic adult stem cells derived from the embryonic mesoderm. They possess self-renewal and multipotent differentiation capabilities, allowing them to give rise to mesodermal cell types, such as osteoblasts, chondroblasts, and adipocytes, as well as non-mesodermal cells, including neuron-like cells and endothelial cells. MSCs play a vital role in maintaining homeostasis across various tissues by facilitating tissue repair, immune regulation, and inflammatory response balance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!