A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The effect of stenosis rate and Reynolds number on local flow characteristics and plaque formation around the atherosclerotic stenosis. | LitMetric

Purpose: Atherosclerosis causes plaque to build-up in arteries. Effect of the specific local hemodynamic environment around an atherosclerotic plaque on the thrombosis formation does not remain quite clear but is believed to be crucial. The aim of this study is to uncover the flow effects on plaques formation.

Methods: To study the mechanically regulated plaque formation, the flow fields in artery blood vessels with different stenosis rates at various Reynolds numbers were simulated numerically with the two-dimensional axisymmetric models, and the hemodynamic characteristics around the plaque were scaled with stenosis rate and Reynolds number.

Results: The results showed that increases of both Reynolds number and stenosis rate facilitated the occurrence of flow separation phenomenon, extended recirculation zone, and upregulated the maximum normalized wall shear stress near the plaque throat section while downregulated the minimal normalized wall shear stress at the front shoulder of plaque, as it should be; in the atherosclerotic plaque leeside of the recirculation zone, an obvious catch bond region of wall shear stress might exist especially under low Reynolds number with stenosis rate smaller than 30%. This catch bond region in the plaque leeside might be responsible for the LBF (low blood flow)-enhanced formation of the atherosclerotic plaque.

Conclusions: This work may provide a novel insight into understanding the biomechanical effects behind the formation and damage of atherosclerotic plaques and propose a new strategy for preventing atherosclerotic diseases.

Download full-text PDF

Source

Publication Analysis

Top Keywords

stenosis rate
16
reynolds number
12
wall shear
12
shear stress
12
plaque
9
rate reynolds
8
characteristics plaque
8
plaque formation
8
formation atherosclerotic
8
atherosclerotic plaque
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!