Organic crystals, although widely studied, have not been considered nascent candidate materials in engineering design. Here we summarize the mechanical properties of organic crystals that have been reported over the past three decades, and we establish a global mechanical property profile that can be used to predict and identify mechanically robust organic crystals. Being composed of light elements, organic crystals populate a narrow region in the mechanical property-density space between soft, disordered organic materials and stiff, ordered materials. Two subsets of extraordinarily stiff and hard organic crystalline materials were identified and rationalized by the normalized number density, strength, and directionality of their intermolecular interactions. We conclude that future lightweight, soft, all-organic components in devices should capitalize on the greatest asset of organic single crystals-namely, the combination of long-range structural order and softness.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.202113988 | DOI Listing |
J Phys Chem Lett
January 2025
College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), State Key Laboratory of Organic Electronics and Information Displays, Nanjing University of Posts and Telecommunications, Nanjing, Jiangsu 210023, P.R. China.
Heat dissipation has become a critical challenge in modern electronics, driving the need for a revolution in thermal management strategies beyond traditional packaging materials, thermal interface materials, and heat sinks. Cubic boron arsenide (c-BAs) offers a promising solution, thanks to its combination of high thermal conductivity and high ambipolar mobility, making it highly suitable for applications in both electronic devices and thermal management. However, challenges remain, particularly in the large-scale synthesis of a high-quality material and the tuning of its physical properties.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
KU Leuven: Katholieke Universiteit Leuven, Chemistry, BELGIUM.
Understanding the impact of oxidative modification on protein structure and functions is essential for developing therapeutic strategies to combat macromolecular damage and cell death. However, selectively inducing oxidative modifications in proteins remains challenging. Herein we demonstrate that [V6O13{(OCH2)3CCH2OH}2]2- (V6-OH) hybrid metal-oxo cluster can be used for selective protein oxidative cleavage and modifications.
View Article and Find Full Text PDFChem Sci
January 2025
Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University Changsha 410083 P. R. China
The layer-stacking mode of a two-dimensional (2D) material plays a dominant role either in its topology or properties, but remains challenging to control. Herein, we developed alkali-metal ion-regulating synthetic control on the stacking structure of a vinylene-linked covalent triazine framework (termed spc-CTF) for improving hydrogen peroxide (HO) photoproduction. Upon the catalysis of EtONa in Knoevenagel polycondensation, a typical eclipsed stacking mode (spc-CTF-4@AA) was built, while a staggered one (spc-CTF-4@AB) was constructed using LiOH.
View Article and Find Full Text PDFACS Mater Lett
January 2025
Department of Materials and London Centre for Nanotechnology, Imperial College London, South Kensington Campus, Exhibition Road, SW7 2AZ London, United Kingdom.
Quantum technologies using electron spins have the advantage of employing chemical qubit media with tunable properties. The principal objective of material engineers is to enhance photoexcited spin yields and quantum spin relaxation. In this study, we demonstrate a facile synthetic approach to control spin properties in charge-transfer cocrystals consisting of 1,2,4,5-tetracyanobenzene (TCNB) and acetylated anthracene.
View Article and Find Full Text PDFCommun Chem
January 2025
Department of Materials Science and Metallurgical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana, India.
Liquid cell transmission electron microscopy (LCTEM) is a powerful technique for investigating crystallisation dynamics with nanometre spatial resolution. However, probing phenomena occurring in liquids while mixing two precursor solutions has proven extremely challenging, requiring sophisticated liquid cell designs. Here, we demonstrate that introducing and withdrawing solvents in sequence makes it possible to maintain optimal imaging conditions while mixing liquids in a commercial liquid cell.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!