The present study was conducted to determine exact location where the acrosome reaction of fertilizing spermatozoa begins in the oviduct of the Chinese hamster. Unlike spermatozoa of other rodent species, Chinese hamster spermatozoa did not spontaneously undergo the acrosome reaction in fertilization-supporting media. In naturally mated females, spermatozoa in the uterus had intact acrosomes, whereas those in the lower oviductal isthmus had visibly thin acrosomal caps. The acrosomal cap was lost when spermatozoa passed through the cumulus oophorus. Thus, Chinese hamster spermatozoa begin the acrosome reaction in the lower isthmus and complete it in the cumulus oophorus. The mucosal epithelium of the oviductal isthmus released many "transparent" vesicles into the lumen, was very fragile and readily sloughed off by rough handling or rapid flushing with medium. Globular materials that oozed out of the dissected oviduct were most likely mucosa cells destroyed by rough handling. Although the oviducts of Chinese hamsters may be exceptionally delicate, this observation nevertheless warns us to cautiously handle the oviducts of any species when studying oviduct secretions that could be involved in inducing capacitation and the acrosome reaction of spermatozoa within the female genital tract.

Download full-text PDF

Source
http://dx.doi.org/10.1002/mrd.23547DOI Listing

Publication Analysis

Top Keywords

chinese hamster
16
acrosome reaction
16
hamster spermatozoa
12
oviductal isthmus
8
cumulus oophorus
8
rough handling
8
spermatozoa
7
chinese
5
sperm acrosome
4
acrosome status
4

Similar Publications

Unlabelled: The choice of media and feeds significantly influences the performance of Chinese Hamster Ovary (CHO) mammalian cell cultures in producing desired biologics like monoclonal antibodies (mAb). Sub-optimal nutrient feed/media composition can severely impact cell proliferation and the quality of the final mAb product. For instance, proper protein glycosylation, crucial for mAb stability, safety, and efficacy, heavily relies on cell culture conditions.

View Article and Find Full Text PDF

Objectives: The chemotherapeutic drug doxorubicin (DOX) affects not only cancer cells but also healthy cells in an undesirable manner. The purpose of this study was to investigate the protective roles of rosmarinic acid (RA) and Epigallocatechin gallate (EGCG) alone and in combination against DOX-induced oxidative stress, cytotoxicity, and genotoxicity in healthy cells. In addition, this study evaluated the expression of the mammalian target of rapamycin (mTOR) protein in the Chinese hamster ovary cell line (CHO-K1).

View Article and Find Full Text PDF

Ligand fishing is a promising strategy for the screening of active ingredients from complex natural products. In this work, human tyrosinase (hTYR) was displayed on the surface of Chinese hamster ovary (CHO) cells for the first time; it was then used as bait to develop a new method for ligand fishing. The localization of hTYR on the CHO cell surface was verified by an enzyme activity test and fluorescence microscopy.

View Article and Find Full Text PDF

Preclinical evaluation of the potential PARP-imaging probe [carbonyl-C]DPQ.

EJNMMI Radiopharm Chem

January 2025

Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria.

Background: Poly (ADP-ribose) polymerase (PARP) enzymes are crucial for the repair of DNA single-strand breaks and have become key therapeutic targets in homologous recombination-deficient cancers, including prostate cancer. To enable non-invasive monitoring of PARP-1 expression, several PARP-1-targeting positron emission tomography (PET) tracers have been developed. Here, we aimed to preclinically investigate [carbonyl-C]DPQ as an alternative PARP-1 PET tracer as it features a strongly distinct chemotype compared to the frontrunners [F]FluorThanatrace and [F]PARPi.

View Article and Find Full Text PDF

The widespread application of pyraclostrobin (PYR), an important strobilurin fungicide with low utilization efficiency, urgently requires optimization for sustainable agriculture. In this study, nanoformulated PYR with nano-iron bismuthide (FeBi) was successfully prepared via flash nanoprecipitation, yielding spherical PYR/FeBi nanoparticles (NPs, Φ120 nm) with stable drug loading capacity (67.9%) and controlled release.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!