Immune responses must be rapid, tightly orchestrated, and tailored to the encountered stimulus. Lymphatic vessels facilitate this process by continuously collecting immunological information (ie, antigens, immune cells, and soluble mediators) about the current state of peripheral tissues, and transporting these via the lymph across the lymphatic system. Lymph nodes (LNs), which are critical meeting points for innate and adaptive immune cells, are strategically located along the lymphatic network to intercept this information. Within LNs, immune cells are spatially organized, allowing them to efficiently respond to information delivered by the lymph, and to either promote immune homeostasis or mount protective immune responses. These responses involve the activation and functional cooperation of multiple distinct cell types and are tailored to the specific inflammatory conditions. The natural patterns of lymph flow can also generate spatial gradients of antigens and agonists within draining LNs, which can in turn further regulate innate cell function and localization, as well as the downstream generation of adaptive immunity. In this review, we explore how information transmitted by the lymph shapes the spatiotemporal organization of innate and adaptive immune responses in LNs, with particular focus on steady state and Type-I vs. Type-II inflammation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8837692PMC
http://dx.doi.org/10.1111/imr.13046DOI Listing

Publication Analysis

Top Keywords

immune responses
16
immune cells
12
spatiotemporal organization
8
immune
8
innate adaptive
8
adaptive immune
8
responses
5
lymph
5
flow spatiotemporal
4
organization immune
4

Similar Publications

The common cold coronaviruses are a source of ongoing morbidity and mortality particularly among elderly and immunocompromised individuals. While cross-reactive immune responses against multiple coronaviruses have been described following severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and vaccination, it remains unclear if these confer any degree of cross-protection against the common cold coronaviruses. A recombinant fowl adenovirus vaccine expressing the SARS-CoV-2 spike protein (FAdV-9-S19) was generated, and protection from SARS-CoV-2 challenge was shown in K18-hACE2 mice.

View Article and Find Full Text PDF

Unlabelled: Respiratory and encephalitic virus infections represent a significant risk to public health globally. Detailed investigations of immunological responses and disease outcomes during sequential virus infections are rare. Here, we define the impact of influenza virus infection on a subsequent virus encephalitis.

View Article and Find Full Text PDF

The Antibody Mediated Prevention (AMP) trials showed that passively infused VRC01, a broadly neutralizing antibody (bNAb) targeting the CD4 binding site (CD4bs) on the HIV-1 envelope protein (Env), protected against neutralization-sensitive viruses. We identified six individuals from the VRC01 treatment arm with multi-lineage breakthrough HIV-1 infections from HVTN703, where one variant was sensitive to VRC01 (IC < 25 ug/mL) but another was resistant. By comparing Env sequences of resistant and sensitive clones from each participant, we identified sites predicted to affect VRC01 neutralization and assessed the effect of their reversion in the VRC01-resistant clone on neutralization sensitivity.

View Article and Find Full Text PDF

Unlabelled: The KREMEN1 (KRM1) protein is a cellular receptor for multiple enteroviruses that cause hand, foot, and mouth disease (HFMD), including coxsackievirus CVA2, CVA3, CVA4, CVA5, CVA6, CVA10, and CVA12. The molecular basis for the broad recognition of these viruses by the KRM1 receptor remains unclear. Here, we report the indispensable role of the completely conserved VP2 capsid protein residue K140 (designated K2140) in mediating receptor recognition and infection by CVA10 and other KRM1-dependent enteroviruses.

View Article and Find Full Text PDF

Purpose: Patients with advanced non-small cell lung cancer (NSCLC) have varying responses to immunotherapy, but there are no reliable, accepted biomarkers to accurately predict its therapeutic efficacy. The present study aimed to construct individualized models through automatic machine learning (autoML) to predict the efficacy of immunotherapy in patients with inoperable advanced NSCLC.

Methods: A total of 63 eligible participants were included and randomized into training and validation groups.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!