Secreted acid phosphatases (APases) dephosphorylate extracellular organic phosphate compounds to supply inorganic phosphate (Pi) to maintain cellular functions. Here, we show that APases are necessary to maintain a normal replicative lifespan in Saccharomyces cerevisiae. Deletion of all four APase genes shortened the lifespan in yeast strains on synthetic media (irrespective of the concentrations of Pi in the media), but it did not affect the intracellular ortho- and polyphosphate levels. Deletion of inositol-pentakisphosphate 2-kinase (IPK1), which encodes inositol-pentakisphosphate 2-kinase, restored the lifespan in APase-null mutants, and IPK1 overexpression shortened the lifespan in wild-type strains. Overexpression of inositol hexakisphosphate (IP ) and heptakisphosphate kinases, KCS1 and VIP1, recovered the lifespan in APase-null mutants. Thus, yeast APases modulate the replicative lifespan, probably through dephosphorylation of intracellular IP .

Download full-text PDF

Source
http://dx.doi.org/10.1002/1873-3468.14245DOI Listing

Publication Analysis

Top Keywords

replicative lifespan
12
secreted acid
8
acid phosphatases
8
shortened lifespan
8
inositol-pentakisphosphate 2-kinase
8
lifespan apase-null
8
apase-null mutants
8
lifespan
7
phosphatases maintain
4
maintain replicative
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!