Uterine fibroids (UF) represent an immense health burden throughout the world. Obesity is considered one of the risk factors for UF development; however, the underlying mechanisms remain largely unexplored. We investigated the effect of obesity on fibroblast activation and its association with inflammation, autophagy dysfunction, and oxidative stress in UF patients. Thirty-five pre-menopausal UF patients were included in this study and classified into non-obese group (BM1 ≤ 30 kg/m, n = 15) and obese group (BMI > 30 kg/m, n = 20). Tissue samples were collected from fibroids and adjacent normal myometrium. Our results showed increased expression of fibroblast activation protein (FAP) together with markers of autophagy, inflammation, and oxidative stress in UF patients, which were all more markedly upregulated in obese compared to non-obese patients. In addition, BMI was significantly positive correlated with FAP and autophagy markers. In conclusion, the results of the present study suggest that obesity-associated autophagy dysregulation together with increased FAP expression may increase the risk of UFs in obese women.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s43032-021-00810-0DOI Listing

Publication Analysis

Top Keywords

fibroblast activation
12
oxidative stress
12
increased expression
8
expression fibroblast
8
activation protein
8
autophagy dysregulation
8
obese women
8
uterine fibroids
8
stress patients
8
autophagy
5

Similar Publications

Aim: The tumor microenvironment in pancreatic cancer, characterized by abundant desmoplastic stroma, has been implicated in the failure of chemotherapy. Therefore, developing therapeutic strategies targeting tumor and stromal cells is essential. Triptolide, a natural compound derived from the plant Tripterygium wilfordii, has shown antitumor activity in various cancers, including pancreatic cancer.

View Article and Find Full Text PDF

A series of tripodal (three-arm) lysine-based peptides were designed and synthesized and their self-assembly properties in aqueous solution and antimicrobial activity were investigated. We compare the behaviors of homochiral tripodal peptides (KKY)K and a homologue containing the bulky aromatic fluorenylmethoxycarbonyl (Fmoc) group Fmoc-(KKY)K, and heterochiral analogues containing k (d-Lys), (kkY)K and Fmoc-(kkY)K. The molecular conformation and self-assembly in aqueous solutions were probed using various spectroscopic techniques, along with small-angle X-ray scattering (SAXS) and cryogenic-transmission electron microscopy (cryo-TEM).

View Article and Find Full Text PDF

Purpose: Sulfur mustard gas (SM) exposure to eyes causes multiple corneal injuries including stromal cell loss in vivo. However, mechanisms mediating stromal cell loss/death remains elusive. This study sought to test the novel hypothesis that SM-induced toxicity to human corneal stromal fibroblasts involves ferroptosis mechanism via p38 MAPK signaling.

View Article and Find Full Text PDF

The sodium phosphate cotransporter-2A (NPT2A) mediates basal and parathyroid hormone (PTH)- and fibroblast growth factor-23 (FGF23)-regulated phosphate transport in proximal tubule cells of the kidney. Both basal and hormone-sensitive transport require sodium hydrogen exchanger regulatory factor-1 (NHERF1), a scaffold protein with tandem PDZ domains, PDZ1 and PDZ2. NPT2A binds to PDZ1.

View Article and Find Full Text PDF

In neurons, the acquisition of a polarized morphology is achieved upon the outgrowth of a single axon from one of several neurites. Small extracellular vesicles (sEVs), such as exosomes, from diverse sources are known to promote neurite outgrowth and thus may have therapeutic potential. However, the effect of fibroblast-derived exosomes on axon elongation in neurons of the central nervous system under growth-permissive conditions remains unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!