Alterations in metabolic pathways were recently recognized as potential underlying drivers of idiopathic pulmonary fibrosis (IPF), translating into novel therapeutic targets. However, knowledge of metabolic and lipid regulation in fibrotic lungs is limited. To comprehensively characterize metabolic perturbations in the bleomycin mouse model of IPF, we analyzed the metabolome and lipidome by mass spectrometry. We identified increased tissue turnover and repair, evident by enhanced breakdown of proteins, nucleic acids and lipids and extracellular matrix turnover. Energy production was upregulated, including glycolysis, the tricarboxylic acid cycle, glutaminolysis, lactate production and fatty acid oxidation. Higher eicosanoid synthesis indicated inflammatory processes. Because the risk of IPF increases with age, we investigated how age influences metabolomic and lipidomic changes in the bleomycin-induced pulmonary fibrosis model. Surprisingly, except for cytidine, we did not detect any significantly differential metabolites or lipids between old and young bleomycin-treated lungs. Together, we identified metabolomic and lipidomic changes in fibrosis that reflect higher energy demand, proliferation, tissue remodeling, collagen deposition and inflammation, which might serve to improve diagnostic and therapeutic options for fibrotic lung diseases in the future.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8807555 | PMC |
http://dx.doi.org/10.1242/dmm.049105 | DOI Listing |
Microb Cell Fact
December 2024
College of Veterinary Medicine, Jilin Agricultural University, Changchun, 130118, China.
17β-estradiol (E2) is an endocrine disruptor, and even trace concentrations (ng/L) of environmental estrogen can interfere with the endocrine system of organisms. Lignin holds promise in enhancing the microbial degradation E2. However, the mechanisms by which lignin facilitates this process remain unclear, which is crucial for understanding complex environmental biodegradation in nature.
View Article and Find Full Text PDFMetabolites
November 2024
Department of Chemistry, Faculty of Science, University of British Columbia, Vancouver Campus, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada.
: The rise of drug-resistant strains presents a significant challenge in the treatment of Leishmaniasis, a neglected tropical disease. Extracellular vesicles (EVs) produced by these parasites have gained attention for their role in drug resistance and host-pathogen interactions. : This study developed and applied a novel lipidomics workflow to explore the lipid profiles of EVs from three types of drug-resistant strains compared to a wild-type strain.
View Article and Find Full Text PDFJ Hazard Mater
December 2024
Key Laboratory of Agri-food Quality and Safety of Ministry of Agriculture and Rural Affairs, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China. Electronic address:
Florfenicol (FF), a third-generation chloramphenicol antibiotic widely used in food-producing animals, has become a "pseudopersistent" environmental contaminant, raising concerns about its potential ecological and human health impacts. However, its bioaccumulation behavior and hepatotoxic mechanisms remain poorly understood. This study aims to address these gaps with a 28-day exposure experiment in adult zebrafish at 0.
View Article and Find Full Text PDFFront Cell Dev Biol
December 2024
Department of Ophthalmology, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China.
Diabetic retinopathy (DR) is a leading global cause of vision impairment, with its prevalence increasing alongside the rising rates of diabetes mellitus (DM). Despite the retina's complex structure, the underlying pathology of DR remains incompletely understood. Single-cell RNA sequencing (scRNA-seq) and recent advancements in multi-omics analyses have revolutionized molecular profiling, enabling high-throughput analysis and comprehensive characterization of complex biological systems.
View Article and Find Full Text PDFGlia
December 2024
Department of Human Genetics, Emory University, Atlanta, Georgia, USA.
The relative ease of generation and proliferation of omics datasets has moved considerably faster than the effective dissemination of these data to the scientific community. Despite advancements in making raw data publicly available, many researchers struggle with data analysis and integration. We propose sharing analyzed data through user-friendly platforms to enhance accessibility.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!