Today, cancer is the second leading cause of death worldwide, and the number of people diagnosed with the disease is expected to rise. Breast cancer is the most commonly diagnosed cancer in women, and it has one of the highest survival rates when treated properly. Because the effectiveness and, as a result, survival of the patient are dependent on each case, it is critical to know the modelling of their survival ahead of time. Artificial intelligence is a rapidly expanding field, and its clinical applications are following suit (having surpassed humans in many evidence-based medical tasks). From the inception of since first stable risk estimator based on statistical methods appeared in survival analysis, there have been numerous versions of it created, with machine learning being used in only a few of them. Nonlinear relationships between variables and the impact they have on the variable to be predicted are very easy to evaluate using statistical methods. However, because they are just mathematical equations, they have flaws that limit the quality of their output. The main goal of this study is to find the best machine learning algorithms for predicting the individualised survival of breast cancer patients, as well as the most appropriate treatment, and to propose new numerical variable stratifications. They will still be carried out using unsupervised machine learning methods that divide patients into groups based on their risk in each dataset. We will compare it to standard groupings to see if it has more significance. Knowing that the greatest challenge in dealing with clinical data is its quantity and quality, we have gone to great lengths to ensure their quality before replicating them. We used the Cox statistical method in conjunction with other statistical methods and tests to find the best possible dataset with which to train our model, despite its ease of multivariate analysis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8627349 | PMC |
http://dx.doi.org/10.1155/2021/9338091 | DOI Listing |
Biol Direct
January 2025
National Key Laboratory for Innovation and Transformation of Luobing Theory; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Jinan, China.
Background: Carotid atherosclerotic plaque is the primary cause of cardiovascular and cerebrovascular diseases. It is closely related to oxidative stress and immune inflammation. This bioinformatic study was conducted to identify key oxidative stress-related genes and key immune cell infiltration involved in the formation, progression, and stabilization of plaques and investigate the relationship between them.
View Article and Find Full Text PDFJ Orthop Surg Res
January 2025
Department of Rheumatology and Immunology, Affiliated Hospital of Yangzhou University, Yangzhou University, No. 368 Hanjiang Middle Road, Yangzhou, Jiangsu, 225000, China.
Rheumatoid arthritis (RA), a chronic inflammatory joint disease causing permanent disability, involves exosomes, nanosized mammalian extracellular particles. Circular RNA (circRNA) serves as a biomarker in RA blood samples. This research screened differentially expressed circRNAs in RA patient plasma exosomes for novel diagnostic biomarkers.
View Article and Find Full Text PDFJ Cheminform
January 2025
School of Systems Biomedical Science, Soongsil University, 369 Sangdo-ro, Dongjak-gu, 06978, Seoul, Republic of Korea.
G protein-coupled receptors (GPCRs) play vital roles in various physiological processes, making them attractive drug discovery targets. Meanwhile, deep learning techniques have revolutionized drug discovery by facilitating efficient tools for expediting the identification and optimization of ligands. However, existing models for the GPCRs often focus on single-target or a small subset of GPCRs or employ binary classification, constraining their applicability for high throughput virtual screening.
View Article and Find Full Text PDFCell Div
January 2025
Babak Myeloma Group, Department of Pathophysiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.
Background: Multiple myeloma (MM) represents the second most common hematological malignancy characterized by the infiltration of the bone marrow by plasma cells that produce monoclonal immunoglobulin. While the quality and length of life of MM patients have significantly increased, MM remains a hard-to-treat disease; almost all patients relapse. As MM is highly heterogenous, patients relapse at different times.
View Article and Find Full Text PDFParasit Vectors
January 2025
Faculty of Information Technology, Mutah University, Mutah, Jordan.
Background: Amebiasis represents a significant global health concern. This is especially evident in developing countries, where infections are more common. The primary diagnostic method in laboratories involves the microscopy of stool samples.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!