Kidneys form dopamine (DA) from L-dopa and serotonin from L-5-hydroxytryptophan (L-5-HTP) via aromatic L-amino acid decarboxylase. We compared the ability of isolated perfused kidneys from adult (20-week-old) spontaneously hypertensive rats (SHR) and normotensive Wistar-Kyoto rats (WKY) to form these biogenic amines. Renal vascular resistance (RVR) was greater in perfused kidneys from SHR (n = 10) than WKY (n = 8) (p less than 0.01). Slight decreases in RVR were observed during L-dopa infusion but these were unrelated to DA formation. L-Dopa infusion was associated with greater DA output in SHR than WKY in both the renal venous and urinary effluents although the latter did not achieve statistical significance. L-5-HTP increased RVR to a greater degree in SHR than WKY kidneys. This was associated with larger quantities of serotonin in the urinary and venous effluents and greater pressor responses to exogenous serotonin in SHR than WKY kidneys; however, either parameter alone was not significantly increased. Our findings do not support a deficiency of intrarenal DA formation as a pathogenic factor for hypertension in SHR. Biogenic amine formation is as great if not greater in SHR than WKY kidneys and appears to contribute largely to the greater increases in renal resistance seen in SHR kidneys on infusion of L-5-HTP. Enhanced renal serotonin formation may elevate blood pressure, whereas enhanced renal DA formation would favor blood pressure lowering, perhaps as a compensatory mechanism.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/0024-3205(86)90268-7 | DOI Listing |
Receptors for the vasoactive adipokine apelin, termed APJ receptors, are G-protein-coupled receptors and are widely expressed throughout the cardiovascular system. APJ receptors can also signal via G-protein-independent pathways, including G-protein-coupled-receptor kinase 2 (GRK2), which inhibits nitric oxide synthase (eNOS) activity and nitric oxide (NO) production in endothelial cells. Apelin causes endothelium-dependent, NO-mediated relaxation of coronary arteries from normotensive animals, but the effects of activating APJ receptor signaling pathways in hypertensive coronary arteries are largely unknown.
View Article and Find Full Text PDFNan Fang Yi Ke Da Xue Xue Bao
January 2025
College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China.
Objectives: To explore the mechanism of Granules (QDG) for alleviating brain damage in spontaneously hypertensive rats (SHRs).
Methods: Twelve 5-week-old SHRs were randomized into SHR control group and SHR+QDG group treated with QDG by gavage at the daily dose of 0.9 g/kg for 12 weeks.
Background: Prostaglandin E (PGE) in the rostral ventrolateral medulla (RVLM) has been recognized as a pivotal pressor substance in hypertension, yet understanding of its effects and origins in the RVLM remains largely elusive. This study aimed to elucidate the pivotal enzymes and molecular mechanisms underlying PGE synthesis induced by central Ang II (angiotensin II) and its implications in the heightened oxidative stress and sympathetic outflow in hypertension.
Methods And Results: RVLM microinjections of PGE and Tempol were administered in Wistar-Kyoto rats.
CNS Neurosci Ther
January 2025
Hypertension Center, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, Gansu, China.
Aims: We aimed to investigate the role of Rnf40 in hypertension-induced cerebrovascular endothelial barrier dysfunction and cognitive impairment.
Methods: We employed microarray data analysis and integrated bioinformatics databases to identify a novel E3 ligase, Rnf40, that targets Parkin. To understand the role of RNF40 in hypertension-induced cerebrovascular endothelial cell damage, we used pAAV-hFLT1-MCS-EGFP-3×Flag-mir30shRnf40 to establish an Rnf40-deficient model in spontaneously hypertensive rats (SHRs).
Int J Mol Sci
December 2024
Department of Human Physiology and Pathophysiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury, Warszawska 30, 10-082 Olsztyn, Poland.
Attention deficit/hyperactivity disorder (ADHD) is defined as a neurodevelopmental condition. The precise underlying mechanisms remain incompletely elucidated. A body of research suggests disruptions in both the cellular architecture and neuronal function within the brain regions of individuals with ADHD, coupled with disturbances in the biochemical parameters.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!