Fertile soils have been an essential resource for humanity for 10,000 y, but the ecological mechanisms involved in the creation and restoration of fertile soils, and especially the role of plant diversity, are poorly understood. Here we use results of a long-term, unfertilized plant biodiversity experiment to determine whether biodiversity, especially plant functional biodiversity, impacted the regeneration of fertility on a degraded sandy soil. After 23 y, plots containing 16 perennial grassland plant species had, relative to monocultures of these same species, ∼30 to 90% greater increases in soil nitrogen, potassium, calcium, magnesium, cation exchange capacity, and carbon and had ∼150 to 370% greater amounts of N, K, Ca, and Mg in plant biomass. Our results suggest that biodiversity, likely in combination with the increased plant productivity caused by higher biodiversity, led to greater soil fertility. Moreover, plots with high plant functional diversity, those containing grasses, legumes, and forbs, accumulated significantly greater N, K, Ca, and Mg in the total nutrient pool (plant biomass and soil) than did plots containing just one of these three functional groups. Plant species in these functional groups had trade-offs between their tissue N content, tissue K content, and root mass, suggesting why species from all three functional groups were essential for regenerating soil fertility. Our findings suggest that efforts to regenerate soil C stores and soil fertility may be aided by creative uses of plant diversity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8670497 | PMC |
http://dx.doi.org/10.1073/pnas.2111321118 | DOI Listing |
Curr Res Microb Sci
December 2024
Research Center for Chemistry - National Research and Innovation Agency (BRIN), KST BJ Habibie, Building 452, Setu, Tangerang Selatan 15314, Indonesia.
Plant-microbe interactions play pivotal roles in sustaining crop productivity and soil fertility, offering promising avenues for sustainable agricultural practices. This review paper explores the multifaceted interactions between plants and various microorganisms, highlighting their significance in enhancing crop productivity, combating pathogens, and promoting soil health. Understanding these interactions is crucial for harnessing their potential in agricultural systems to address challenges such as food security and environmental sustainability.
View Article and Find Full Text PDFBMC Genomics
January 2025
Department of Biological and Chemical Engineering, USCR Molecular Bacteriology and Genomics, University of Carthage, National Institute of Applied Sciences and Technology, Tunis, 2080, Tunisia.
Background: The stone-dwelling genus Blastococcus plays a key role in ecosystems facing extreme conditions such as drought, salinity, alkalinity, and heavy metal contamination. Despite its ecological significance, little is known about the genomic factors underpinning its adaptability and resilience in such harsh environments. This study investigates the genomic basis of Blastococcus's adaptability within its specific microniches, offering insights into its potential for biotechnological applications.
View Article and Find Full Text PDFPhysiol Plant
January 2025
University of Turin, Department of Agricultural, Forest and Food Science, Grugliasco, Italy.
Drought and nutrient-poor soils can increase the invasive potential of non-native species, further changing the ecosystems they invade. The high adaptability of these alien species, especially in their efficient use of resources, improves their resilience against abiotic stress. Here, we evaluated the response of the North American Quercus rubra L.
View Article and Find Full Text PDFFront Chem
January 2025
College of Chemistry and Chemical Engineering, Tarim University, Alar, Xinjiang, China.
As an agricultural planting practice, preceding cropping can not only enhance soil fertility and reduce pests and diseases but also boost crop yield and quality. In this study, SZS samples from different preceding cropping areas were selected as research subjects. Phenolic compounds were analyzed using high-performance liquid chromatography (HPLC), and antioxidant activities were assessed based on free radical scavenging effects.
View Article and Find Full Text PDFFront Plant Sci
December 2024
College of Food Science and Engineering, Ningbo University, Ningbo, Zhejiang, China.
Continuous cropping decreases soil nutrients and destroys microbial community structure, so the development of eco-friendly and effective biofertilizers is necessary under present conditions. In this study, the preserving microalgal strain sp. (H) was firstly selected to be combined with agroforestry waste (shell powder, straw fermentation liquid) and the agroforestry microorganism sp.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!