Purpose: Novel drug delivery systems (DDSs) hold great promise for the treatment of oral cavity diseases. The main objective of this article was to provide a detailed overview regarding recent advances in the use of novel and nanostructured DDSs in alleviating and treating unpleasant conditions of the oral cavity. Strategies to maximize the benefits of these systems in the treatment of oral conditions and future directions to overcome these issues are also discussed.
Methods: Publications from the last 10 years investigating novel and nanostructured DDSs for pathologic oral conditions were browsed in a systematic search using the PubMed/MEDLINE, Web of Science, and Scopus databases. Research on applications of novel DDSs for periodontitis, oral carcinomas, oral candidiasis, xerostomia, lichen planus, aphthous stomatitis, and oral mucositis is summarized. A narrative exploratory review of the most recent literature was undertaken.
Findings: Conventional systemic administration of therapeutic agents could exhibit high clearance of drugs from the bloodstream and low accumulation at the target site. In contrast, conventional topical systems face problems such as short residence time in the affected region and low patient compliance. Novel and nanostructured DDSs are among the most effective and commonly used methods for overcoming the problems of conventional DDSs. The main advantages of these systems are that they possess the ability to protect active agents from systemic and local clearance, enhance bioavailability and cellular uptake, and provide immediate or modified release of therapeutic agents after administration. In the design of local drug delivery devices such as nanofiber mats, films, and patches, components and excipients can significantly affect factors such as drug release rate, residence time in the oral cavity, and taste in the mouth. Choosing appropriate additives is therefore essential.
Implications: Local drug delivery devices such as nanofiber mats, nanoparticles, liposomes, hydrogels, films, and patches for oral conditions can significantly affect drug efficacy and safety. However, more precise clinical studies should be designed and conducted to confirm promising in vitro and in vivo results. In recent years, novel and nanostructured DDSs increasingly attracted the attention of researchers as a means of treatment and alleviation of oral diseases and unpleasant conditions. However, more clinical studies should be performed to confirm promising in vitro and in vivo results. To transform a successful laboratory model into a marketable product, the long-term stability of prepared formulations is essential. Also, proper scale-up methods with optimum preparation costs should be addressed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.clinthera.2021.10.016 | DOI Listing |
Sensors (Basel)
December 2024
Department of Chemistry and Biochemistry, Institute of Fluorescence, University of Maryland, Baltimore County, 701 E Pratt St, Baltimore, MD 21202, USA.
We report on the detection and quantification of aqueous DNA by a fluorophore-induced plasmonic current (FIPC) sensing method. FIPC is a mechanism described by our group in the literature where a fluorophore in close proximity to a plasmonically active metal nanoparticle film (MNF) is able to couple with it, when in an excited state. This coupling produces enhanced fluorescent intensity from the fluorophore-MNF complex, and if conditions are met, a current is generated in the film that is intrinsically linked to the properties of the fluorophore in the complex.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Innovation Platform of Micro/Nano Technology for Biosensing, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311200, China.
As a crucial biomarker for the early warning and prognosis of liver cancer diseases, elevated levels of alpha-fetoprotein (AFP) are associated with hepatocellular carcinoma and germ cell tumors. Herein, we present a novel signal-on electrochemical aptamer sensor, utilizing AuNPs-MXene composite materials, for sensitive AFP quantitation. The AuNPs-MXene composite was synthesized through a simple one-step method and modified on portable microelectrodes.
View Article and Find Full Text PDFPharmaceutics
December 2024
Department of Pharmaceutical Sciences, College of Pharmacy, QU Health Sector, Qatar University, Doha 2713, Qatar.
Background/objectives: This study aimed to fabricate, optimize, and characterize nanostructured lipid carriers (NLCs) loaded with trans-resveratrol (TRES) as an anti-cancer drug for pulmonary drug delivery using medical nebulizers.
Methods: Novel TRES-NLC formulations (F1-F24) were prepared via hot, high-pressure homogenization. One solid lipid (Dynasan 116) was combined with four liquid lipids (Capryol 90, Lauroglycol 90, Miglyol 810, and Tributyrin) in three different ratios (10:90, 50:50, and 90:10 /), with a surfactant (Tween 80) in two different concentrations (0.
Molecules
December 2024
College of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China.
As a sustainable alternative technology to the cost- and energy-intensive Haber-Bosch method, electrochemical nitrogen (N) reduction offers direct conversion of N to NH under ambient conditions. Direct use of noble metals or non-noble metals as electrocatalytic materials results in unsatisfactory electrocatalytic properties because of their low electrical conductivity and stability. Herein, three-dimensional flexible carbon nanofiber (CNF/TiO@CoS) nanostructures were prepared on the surface of CNF by using electrospinning, a hydrothermal method, and in situ growth.
View Article and Find Full Text PDFMolecules
December 2024
Department of Material Science and Engineering, University of Ioannina, 45110 Ioannina, Greece.
Biomass valorization and bio-based material development are of major research interest following the spirit of the circular economy. Aloe vera cultivation is a widespread agricultural activity oriented toward supplement production because of its well-known antioxidant and antimicrobial properties. Aloe vera juice production also produces a large amount of biomass byproducts that are usually landfilled.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!