The design and construction of transition metal catalysts with high performance and low-cost characteristics are imperative for liquid hydrogen storage materials. In this study, we prepared ultrathin carbon-stabilized Co-doped CoO nanofilms (C-Co/CoO NFs) using an ionic liquid/water interface strategy for sodium borohydride (NaBH) hydrolysis. Owing to its two-dimensional (2D) NF structure and the protective effects of the composite carbon, the C-Co/CoO NF catalyst exhibited remarkable activity and durability for hydrogen generation from NaBH hydrolysis. The hydrogen generation rate reached 8055 mL·min·g (5106 mL·min·g) and the catalyst could be recycled more than 20 times, surpassing most reported metal-based catalysts under comparable conditions. In addition, the exceptional 2D Co-based NF structures, with numerous active sites, assisted in the activation of NaBH and water molecules, promoting hydrogen production. Thus, these results provided an in-depth understanding of hydrogen generation from NaBH hydrolysis, and an effective strategy for rationally designing highly active and durable 2D NF catalysts.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2021.11.041DOI Listing

Publication Analysis

Top Keywords

hydrogen generation
16
nabh hydrolysis
12
ionic liquid/water
8
sodium borohydride
8
generation nabh
8
hydrogen
6
stabilized cobalt-based
4
cobalt-based nanofilm
4
nanofilm catalyst
4
catalyst prepared
4

Similar Publications

In current study, microstructural, mechanical and corrosion behaviour were investigated with incorporation of dual reinforced AZ91D surface composites. This research was carried out for enhancement of the bio-degradability in biological environment. The surface composites were successfully fabricated by friction stir processing method with a rotation speed of 800 rpm, travel speed of 80 mm/min and 2.

View Article and Find Full Text PDF

Efficient thermal generation from solar/electric energy in transparent films remains challenging due to the limited toolbox of high-performance thermal generation materials and methods for microstructure engineering. Here, we proposed a two-step strategy to introduce hierarchical wrinkles to the MXene composite films with high transparency, leading to upgraded photo/electrothermal conversion efficiency. Specifically, the thin film contains protic acid-treated MXene layers assembled with Ag nanowires (H-MXene/Ag NWs).

View Article and Find Full Text PDF

Reconciling Variability in Multiple Stressor Effects Using Environmental Performance Curves.

Ecol Lett

January 2025

Department of Geography, Faculty of Science, Environment and Economy, University of Exeter, Exeter, UK.

Understanding the effects of multiple stressors has become a major focus in ecology and evolution. While many studies have investigated the combined effects of stressors, revealing massive variability, a mechanistic understanding that reconciles the diversity of multiple stressor outcomes is lacking. Here, we show how performance curves can fill this gap by revealing mechanisms that shape multiple stressor outcomes.

View Article and Find Full Text PDF

Anaerobic gut fungi (AGF) were the last phylum to be identified within the rumen microbiome and account for 7-9% of microbial biomass. They produce potent lignocellulases that degrade recalcitrant plant cell walls, and rhizoids that can penetrate the cuticle of plant cells, exposing internal components to other microbiota. Interspecies H transfer between AGF and rumen methanogenic archaea is an essential metabolic process in the rumen that occurs during the reduction of CO to CH by methanogens.

View Article and Find Full Text PDF

Ligand-based cheminformatics and free energy-inspired molecular simulations for prioritizing and optimizing G-protein coupled receptor kinase-6 (GRK6) inhibitors in multiple myeloma treatment.

Comput Biol Chem

January 2025

Drug Discovery and Development Laboratory (DDD Lab), Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India. Electronic address:

Multiple myeloma (MM) is the second most frequently diagnosed hematological malignancy, presenting limited treatment options with no curative potential and significant drug resistance. Recent studies involving genetic knockdown established the crucial role of GRK6 in upholding the viability of MM cells, emphasizing the need to identify potential inhibitors. Computational exploration of GRK6 inhibitors has not been attempted previously.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!