Is microplastic an oxidative stressor? Evidence from a meta-analysis on bivalves.

J Hazard Mater

International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai 201306, China; Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China. Electronic address:

Published: February 2022

Microplastic pollution is a major threat to the marine environment attracting attention from scientific and public communities. Although we have sufficient evidence that microplastic is ubiquitous in all ecosystems, the question of the harmfulness of microplastic exposure is still under debate. Filter feeders like bivalves are commonly exposed to microplastics in water and sediments and thus can serve as excellent biological indicators for microplastic pollution. A relatively rich toxicological literature has been focusing on microplastic effects on bivalves but we have yet to reach an agreement on the toxic effects and mechanisms of microplastics. Here, we conducted a meta-analysis and bibliometrics analysis of the microplastic studies in bivalves. The bibliometric analysis (used to evaluate the general research trends) showed that the investigation of microplastic distribution in the marine environment and the molecular mechanisms of microplastic toxicity are the two major hot spots of research. Based on analyses of ecologically and environmentally relevant microplastics concentrations, particle sizes and polymer types, we discuss the physiological effects of microplastics on bivalves, and the severity and direction of the effects at the cellular, tissue, organ and organismal levels. The meta-analysis results show that microplastics can induce time-dependent oxidative stress in bivalves. Generally, the activities of antioxidant enzymes, such as glutathione peroxidase (GPx), glutathione-S-transferase (GST) and superoxide dismutase (SOD) increased during short-term exposure but declined after long-term exposure to microplastics. Non-linear response of GPx, GST and SOD enzymes to MP exposure over time indicate that these enzymes are not good biomarkers of MPs effects in marine bivalves. The tissue glutathione levels and catalase (CAT activity) showed an increase during both short- and long term MP exposures and thus can be used as oxidative stress biomarkers of sublethal MPs effects in marine bivalves.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2021.127211DOI Listing

Publication Analysis

Top Keywords

microplastic
9
bivalves
8
microplastic pollution
8
marine environment
8
oxidative stress
8
mps effects
8
effects marine
8
marine bivalves
8
microplastics
6
effects
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!