Recently, it has been shown that the chiral magnetic insulator CuOSeOhosts skyrmions in two separated pockets in temperature and magnetic field phase space. It has also been shown that the predominant stabilization mechanism for the low-temperature skyrmion (LTS) phase is via the crystalline anisotropy, opposed to temperature fluctuations that stabilize the well-established high-temperature skyrmion (HTS) phase. Here, we report on a detailed study of LTS generation by field cycling, probed by GHz spin dynamics in CuOSeO. LTSs are populated via a field cycling protocol with the static magnetic field applied parallel to the ⟨100⟩ crystalline direction of plate and cuboid-shaped bulk crystals. By analyzing temperature-dependent broadband spectroscopy data, clear evidence of LTS excitations with clockwise (CW), counterclockwise (CCW), and breathing mode (BR) character at temperatures below= 40 K are shown. We find that the mode intensities can be tuned with the number of field-cycles below the saturation field. By tracking the resonance frequencies, we are able to map out the field-cycle-generated LTS phase diagram, from which we conclude that the LTS phase is distinctly separated from the high-temperature counterpart. We also study the mode hybridization between the dark CW and the BR modes as a function of temperature. By using two CuOSeOcrystals with different shapes and therefore different demagnetization factors, together with numerical calculations, we unambiguously show that the magnetocrystalline anisotropy plays a central role for the mode hybridization.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-648X/ac3e1cDOI Listing

Publication Analysis

Top Keywords

lts phase
12
low-temperature skyrmion
8
magnetic field
8
field cycling
8
mode hybridization
8
field
5
phase
5
lts
5
tunable gigahertz
4
gigahertz dynamics
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!