We revealed that the absorption aerosol lying below or above the morning residual layer (MRL) promotes (stove effect, heating the MRL layer) or strongly inhibits (dome effect, heating the temperature inversion layer) the development of planetary boundary layer (PBL) after sunrise, while scattering aerosol exhibits similar suppression (surface or aloft umbrella effect) on the PBL regardless of its vertical location. However, the role of different type of aerosols (i.e., strong absorption aerosol and purely scattering aerosol) present from MRL to upper atmosphere remains lacking and therefore, needs to be further explored. Utilizing a large-eddy simulation model constrained by the in-situ observations in urban Beijing, we observed that the dome inhibition of absorption aerosols on PBL development becomes weaker as elevating the aerosol layer, and the effect (virtual dome effect) remains no change beyond a certain height, which is defined as the dome effective height z. This height z is highly related to the surface sensible heat flux. By comparison, the altitude of light-scattering aerosols relative to the MRL was less important. The scattering aerosols exhibit similar inhibition from MRL to upper atmosphere (aloft umbrella effect), but to a weaker extent than the virtual dome effect. The virtual dome effect and aloft umbrella effect play a leading role during some extremely polluted scenarios with deep aerosol layer, such as sandstorms and volcanic eruptions. Aerosol dome, virtual dome, and aloft umbrella effects, together with aerosol stove and surface umbrella effects, further advance the understanding on aerosol-PBL interactions, which is, more broadly, applied to interpret the impact of aerosol on PBL over other ecosystems as well as exoplanet atmospheres.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2021.151953DOI Listing

Publication Analysis

Top Keywords

aloft umbrella
16
virtual dome
16
aerosol
9
layer
8
residual layer
8
planetary boundary
8
boundary layer
8
absorption aerosol
8
dome
8
scattering aerosol
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!