Ringed seal (Pusa hispida) breeding habitat on the landfast ice in northwest Alaska during spring 1983 and 1984.

PLoS One

Living Resources, Inc., Fairbanks, Alaska, United States of America.

Published: January 2022

There has been significant sea ice loss associated with climate change in the Pacific Arctic, with unquantified impacts to the habitat of ice-obligate marine mammals such as ringed seals (Pusa hispida). Ringed seals maintain breathing holes and excavate subnivean lairs on sea ice to provide protection from weather and predators during birthing, nursing, and resting. However, there is limited baseline information on the snow and ice habitat, distribution, density, and configuration of ringed seal structures (breathing holes, simple haul-out lairs, and pup lairs) in Alaska. Here, we describe historic field records from two regions of the eastern Chukchi Sea (Kotzebue Sound and Ledyard Bay) collected during spring 1983 and 1984 to quantify baseline ringed seal breeding habitat and map the distribution of ringed seal structures using modern geospatial tools. Of 490 structures located on pre-established study grids by trained dogs, 29% were pup lairs (25% in Kotzebue Sound and 33% in Ledyard Bay). Grids in Ledyard Bay had greater overall density of seal structures than those in Kotzebue Sound (8.6 structures/km2 and 7.1 structures/km2), but structures were larger in Kotzebue Sound. Pup lairs were located in closer proximity to other structures and characterized by deeper snow and greater ice deformation than haul-out lairs or simple breathing holes. At pup lairs, snow depths averaged 74.9 cm (range 37-132 cm), with ice relief nearby averaging 76 cm (range 31-183 cm), and ice deformation 29.9% (range 5-80%). We compare our results to similar studies conducted in other geographic regions and discuss our findings in the context of recent declines in extent and duration of seasonal cover of landfast sea ice and snow deposition on sea ice. Ultimately, additional research is needed to understand the effects of recent environmental changes on ringed seals, but our study establishes a baseline upon which future research can measure pup habitat in northwest Alaska.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8629220PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0260644PLOS

Publication Analysis

Top Keywords

ringed seal
16
sea ice
16
pup lairs
16
kotzebue sound
16
ringed seals
12
breathing holes
12
seal structures
12
ledyard bay
12
ice
9
pusa hispida
8

Similar Publications

Trace elements in Alaska's ice seals in the 2000s and 2010s.

Sci Total Environ

December 2024

North Slope Borough, Department of Wildlife Management, Utqiaġvik, AK 99723, USA; Institute of Arctic Biology, University of Alaska, Fairbanks, AK 99708, USA.

Ringed (Pusa hispida), bearded (Erignathus barbatus), spotted (Phoca largha), and ribbon (Histriophoca fasciata) seals are ice-associated seals that are important subsistence resources for coastal Alaska Native people. These seals are also mid- to upper trophic level Arctic predators and primary prey of polar bears (Ursus maritimus). We analyzed concentrations of 19 trace elements in seal liver, kidney, muscle, and blubber, including arsenic, cadmium, lead, mercury, and vanadium due to their potential toxicity.

View Article and Find Full Text PDF

Recent unusual mortality events involving skin pathology in bearded (), ringed (), and spotted seals () in Alaska highlight the potential sensitivity of ice-associated species to the complex effects of climate change. The regulation of thyroid hormones, cortisol, and vitamin A have been shown to play essential roles in skin health and seasonal molt in some pinnipeds. Unfortunately, the lack of available reference data for healthy Alaskan ice seals has prevented the adequate evaluation of these factors in cases associated with mortality events.

View Article and Find Full Text PDF

Over the past three decades, incidental bycatch has been the single most frequent verified cause of death of the endangered Saimaa ringed seal (Pusa hispida saimensis). Spatial and temporal fishing closures have been enforced to mitigate bycatch, which is mainly caused by the gillnets of recreational fishers. In this study, we employed an array of statistical machine learning methods to recognize patterns of death and to evaluate the impacts of annual fishing closures (15th April-30th June) on the recovery of the Saimaa ringed seal population during 1991-2021.

View Article and Find Full Text PDF
Article Synopsis
  • The Baikal seal, a freshwater seal unique to Lake Baikal, has a long history of being landlocked and is classified as a species of least concern due to its stable population despite its limited habitat.
  • Recent research has expanded on genetic studies by sequencing the genomes of six Baikal seals alongside other seal species, enhancing our understanding of their evolutionary relationships.
  • Findings indicate that the genetic diversity of the Baikal seal is comparable to that of other seals, prompting calls for further research on genomic diversity across its range.
View Article and Find Full Text PDF

The allelic diversity of exon 2 (DQB gene) and exon 3 (DRB gene) of major histocompatibility complex class II was studied for the first time in two species of the landlocked pinnipeds, Baikal (N = 79) and Caspian (N = 32) seals, and these were in compared with the widespread Arctic species, the ringed seal (N = 13). The analysis of the second exon comprising the antigen-binding region revealed high allelic diversity in all three species but the pattern of the diversity was the most specific for the Baikal seal. This species differs from the other two by the smallest number of alleles in the population, yet they have the largest number of alleles per individual and by the maximum similarity of individual genotypes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!