AI Article Synopsis

  • Glioblastoma multiforme (GBM) is the most common and aggressive brain cancer, necessitating the identification of molecular targets to enhance patient treatment and prognosis.
  • The analysis of various gene expression databases revealed five long non-coding RNAs (lncRNAs) linked to survival in GBM, and a specific regulatory pathway involving H19, hsa-miR-338-3P, and NRP1 was identified.
  • High levels of NRP1 in GBM patients correlated with poor prognosis, suggesting that NRP1 could serve as an independent prognostic indicator for GBM outcomes.

Article Abstract

Glioblastoma multiforme (GBM) is the most common and also the most invasive brain cancer. GBM progression is rapid and its prognosis is poor. Therefore, finding molecular targets in GBM is a critical goal that could also play important roles in clinical diagnostics and treatments to improve patient prognosis. We jointly analyzed the GSE103227, GSE103229, and TCGA databases for differentially expressed RNA species, obtaining 52 long non-coding RNAs (lncRNAs), 31 microRNAs (miRNAs), and 186 mRNAs, which were used to build a competing endogenous RNA network. Kaplan-Meier and receiver operating characteristic (ROC) analyses revealed five survival-related lncRNAs: H19, LINC01574, LINC01614, RNF144A-AS1, and OSMR-AS1. With multiple optimization mRNAs, we found the H19-hsa-miR-338-3P-NRP1 regulatory pathway. Additionally, we noted high NRP1 expression in GBM patients, and Kaplan-Meier and ROC analyses showed that NRP1 expression was associated with GBM prognosis. Cox analysis indicated that NRP1 is an independent prognostic factor in GBM patients. In conclusion, H19 and hsa-miR-338-3P regulate NRP1 expression, and this pathway plays an important role in GBM.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8629300PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0260103PLOS

Publication Analysis

Top Keywords

nrp1 expression
16
roc analyses
8
gbm patients
8
gbm
7
nrp1
5
h19- hsa-mir-338-3p-mediated
4
hsa-mir-338-3p-mediated nrp1
4
expression
4
expression independent
4
independent predictor
4

Similar Publications

The bioengineering of vascular networks is pivotal to create complex tissues and organs for regenerative medicine applications. However, bioengineered tissues comprising an arterial and venous plexus alongside a lymphatic capillary network have not been explored yet. Here, scRNA-seq is first employed to investigate the arterio-venous endothelial cell marker patterning in human fetal and juvenile skin.

View Article and Find Full Text PDF

Crosstalk between GLTSCR1-deficient endothelial cells and tumour cells promotes colorectal cancer development by activating the Notch pathway.

Cell Death Differ

January 2025

Department of Pathology and International Institutes of Medicine, The Fourth Affiliated Hospital (Yiwu), Zhejiang University School of Medicine, Hangzhou, 310058, China.

Cancer stem cells (CSCs) typically reside in perivascular niches, but whether endothelial cells of blood vessels influence the stemness of cancer cells remains poorly understood. This study revealed that endothelial cell-specific GLTSCR1 deletion promotes colorectal cancer (CRC) tumorigenesis and metastasis by increasing cancer cell stemness. Mechanistically, knocking down GLTSCR1 induces the transformation of endothelial cells into tip cells by regulating the expression of Neuropilin-1 (NRP1), thereby increasing the direct contact and interaction between endothelial cells and tumour cells.

View Article and Find Full Text PDF

The establishment and growth of the arterial endothelium requires the coordinated expression of numerous genes. However, regulation of this process is not yet fully understood. Here, we combined analysis with transgenic mice and zebrafish models to characterize arterial-specific enhancers associated with eight key arterial identity genes (/, , and .

View Article and Find Full Text PDF

L-theanine promotes angiogenesis in limb ischemic mice by modulating NRP1/VEGFR2 signaling.

Biomol Biomed

January 2025

Department of Cardiology of The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China; State Key Laboratory of Transvascular Implantation Devices, Hangzhou, China; Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China.

Peripheral artery disease (PAD), primarily caused by atherosclerosis, leads to the narrowing or blockage of arteries that supply blood to the limbs. This study explores the pro-angiogenic effects of L-theanine and its underlying mechanisms in a mouse model of hindlimb ischemia (HLI). To evaluate L-theanine's pro-angiogenic effects, human umbilical vein endothelial cells (HUVECs) were subjected to tube formation, migration, sprouting, and proliferation assays.

View Article and Find Full Text PDF

Resistance to epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) is the main cause of mortality in lung cancer. This study aimed to investigate the roles of neuropilin 1 (NRP1) in non-small cell lung cancer (NSCLC). NRP1 expression was assessed in tumor tissues from patients with osimertinib-resistant (OR) NSCLC and osimertinib-responsive NSCLC as well as in patients with paracancerous NSCLC tissues who did not undergo radiotherapy or chemotherapy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!