The present study evaluated the importance of auxiliary traits of a principal trait based on phenotypic information and previously known genetic structure using computational intelligence and machine learning to develop predictive tools for plant breeding. Data of an F2 population represented by 500 individuals, obtained from a cross between contrasting homozygous parents, were simulated. Phenotypic traits were simulated based on previously established means and heritability estimates (30%, 50%, and 80%); traits were distributed in a genome with 10 linkage groups, considering two alleles per marker. Four different scenarios were considered. For the principal trait, heritability was 50%, and 40 control loci were distributed in five linkage groups. Another phenotypic control trait with the same complexity as the principal trait but without any genetic relationship with it and without pleiotropy or a factorial link between the control loci for both traits was simulated. These traits shared a large number of control loci with the principal trait, but could be distinguished by the differential action of the environment on them, as reflected in heritability estimates (30%, 50%, and 80%). The coefficient of determination were considered to evaluate the proposed methodologies. Multiple regression, computational intelligence, and machine learning were used to predict the importance of the tested traits. Computational intelligence and machine learning were superior in extracting nonlinear information from model inputs and quantifying the relative contributions of phenotypic traits. The R2 values ranged from 44.0% - 83.0% and 79.0% - 94.0%, for computational intelligence and machine learning, respectively. In conclusion, the relative contributions of auxiliary traits in different scenarios in plant breeding programs can be efficiently predicted using computational intelligence and machine learning.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8629227 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0257213 | PLOS |
Comput Methods Biomech Biomed Engin
January 2025
School of Computer Science and Artificial Intelligence, Aliyun School of Big Data, Changzhou University, Changzhou, P.R. China.
Slow eye movements (SEMs) are a reliable physiological marker of drivers' sleep onset, often accompanied by EEG alpha wave attenuation. A parallel multimodal 1D convolutional neural network (PM-1D-CNN) model is proposed to classify SEMs. The model uses two parallel 1D-CNN blocks to extract features from EOG and EEG signals, which are then fused and fed into fully connected layers for classification.
View Article and Find Full Text PDFGastro Hep Adv
September 2024
Blacktown Clinical School, School of Medicine, Western Sydney University, Penrith, New South Wales, Australia.
Digit Health
January 2025
School of Public Affairs, Zhejiang University, Hangzhou, China.
This letter addresses the integration of artificial intelligence and the Internet of Things-based older adult healthcare programs with existing community and institutional elderly care systems. It highlights the current disconnect leading to service duplication and resource inefficiencies, proposes multifaceted integration approaches, and underscores the importance of supportive policies. International examples are referenced to demonstrate successful models, emphasizing the need for coordinated care to enhance service delivery and optimize resource use.
View Article and Find Full Text PDFCureus
December 2024
Department of Orthodontics, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, IRN.
Background Orthodontic diagnostic workflows often rely on manual classification and archiving of large volumes of patient images, a process that is both time-consuming and prone to errors such as mislabeling and incomplete documentation. These challenges can compromise treatment accuracy and overall patient care. To address these issues, we propose an artificial intelligence (AI)-driven deep learning framework based on convolutional neural networks (CNNs) to automate the classification and archiving of orthodontic diagnostic images.
View Article and Find Full Text PDFNeurooncol Adv
January 2025
Institute for Artificial Intelligence in Medicine, University Hospital Essen, Germany.
Background: This study aimed to develop an automated algorithm to noninvasively distinguish gliomas from other intracranial pathologies, preventing misdiagnosis and ensuring accurate analysis before further glioma assessment.
Methods: A cohort of 1280 patients with a variety of intracranial pathologies was included. It comprised 218 gliomas (mean age 54.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!