AI Article Synopsis

  • Phytochromes are light-sensitive proteins that undergo structural changes when exposed to light, leading to various physiological responses; this process begins with a photoisomerization of their chromophore, which is crucial for their function.* -
  • The study investigates the role of a conserved histidine amino acid in phytochromes by comparing two variants from myxobacteria, one with histidine and one with threonine, to understand their effects on the protein's structure and function.* -
  • Findings indicate that while the overall mechanism of light response remains unchanged regardless of the histidine's presence, it does affect the chromophore's geometry and light absorption characteristics, contributing to structural differences between the variants.*

Article Abstract

Phytochromes are sensory photoreceptors that use light to drive protein structural changes, which in turn trigger physiological reaction cascades. The process starts with a double-bond photoisomerization of the linear methine-bridged tetrapyrrole chromophore in the photosensory core module. The molecular mechanism of the photoconversion depends on the structural and electrostatic properties of the chromophore environment, which are highly conserved in related phytochromes. However, the specific role of individual amino acids is yet not clear. A histidine in the vicinity of the isomerization site is highly conserved and almost invariant among all phytochromes. The present study aimed at analyzing its role by taking advantage of a myxobacterial phytochrome SaBphP1 from , where this histidine is naturally substituted with a threonine (Thr289), and comparing it to its normal, His-containing counterpart from the same organism SaBphP2 (His275). We have carried out a detailed resonance Raman and IR spectroscopic investigation of the wild-type proteins and their respective His- or Thr-substituted variants (SaBphP1-T289H and SaBphP2-H275T) using the well-characterized prototypical phytochrome Agp1 from as a reference. The overall mechanism of the photoconversion is insensitive toward the His substitution. However, the chromophore geometry at the isomerization site appears to be affected, with a slightly stronger twist of ring D in the presence of Thr, which is sufficient to cause different light absorption properties in SaBphP1 and SaBphP2. Furthermore, the presence of His allows for multiple hydrogen-bonding interactions with the ring D carbonyl which may be the origin for the geometric differences of the C-D methine bridge compared to the Thr-containing variants. Other structural and mechanistic differences are independent of the presence of His. The most striking finding is the protonation of the ring C propionate in the Pfr states of SaBphP2, which is common among bathy phytochromes but so far has not been reported in prototypical phytochromes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9447488PMC
http://dx.doi.org/10.1021/acs.jpcb.1c08245DOI Listing

Publication Analysis

Top Keywords

isomerization site
12
mechanism photoconversion
8
highly conserved
8
phytochromes
6
role conserved
4
conserved histidine
4
chromophore
4
histidine chromophore
4
chromophore isomerization
4
site phytochromes
4

Similar Publications

Biliverdin reductase B (BLVRB) is a redox regulator that catalyzes nicotinamide adenine dinucleotide phosphate (NADPH)-dependent reductions of multiple substrates, including flavins and biliverdin-β. BLVRB has emerging roles in redox regulation and post-translational modifications, highlighting its importance in various physiological contexts. In this study, we explore the structural and functional differences between human BLVRB and its hyrax homologue, focusing on evolutionary adaptations at the active site and allosteric regions.

View Article and Find Full Text PDF
Article Synopsis
  • Photoresponsive drug delivery systems offer enhanced cancer treatment but face issues with size and limited light penetration.
  • A new near infrared responsive system was created using azobenzene-modified silica nanoparticles that release a drug upon specific light excitation.
  • The design allows for targeted delivery to cancer cell nuclei, facilitating DNA damage and cell destruction, making it a promising approach for effective cancer therapy.
View Article and Find Full Text PDF

Identification of a selective pyruvate dehydrogenase kinase 1 (PDHK1) chemical probe by virtual screening.

Eur J Med Chem

December 2024

Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI, 48109, USA; Life Sciences Institute, University of Michigan, Ann Arbor, MI, 48109, USA. Electronic address:

PDHK1 is a non-canonical Ser/Thr kinase that negatively regulates the pyruvate dehydrogenase complex (PDC), restricting entry of acetyl-CoA into the tricarboxylic acid (TCA) cycle and downregulating oxidative phosphorylation. In many glycolytic tumors, PDHK1 is overexpressed to suppress activity of the PDC and cause a shift in metabolism toward an increased reliance on glycolysis (the Warburg effect). Genetic studies have shown that knockdown or knockout of PDHK1 reverts this phenotype and inhibits tumor growth in vitro and in vivo, but chemical tools to pharmacologically validate and build upon these data are lacking.

View Article and Find Full Text PDF

Tandem mass spectrometry (MS) is one of the most effective methods to obtain the structures of organic molecules, enabling the observation of multigenerational ion fragments. Collision-induced dissociation (CID) is currently the most mature technique for mass spectrometry analysis. Ion trap mass spectrometry (ITMS) is favored for on-site detection field, due to its ability of MS analysis with a single trap and its small size.

View Article and Find Full Text PDF

Aldol reactions are one of the most fundamental organic reactions involving the formation of carbon-carbon bonds that are commonly used in the synthesis of complex molecules through the condensation of an enol or enolate with a carbonyl group. The aldol reaction of thiohydantoin derivatives with benzaldehyde starts with hydrogen removal from C5 by lithium diisopropylamide (LDA) to form the enolate. Benzaldehyde adds to the enolate either at the less or more hindered site.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!