We have developed a simple and straightforward way to realize controlled postdoping toward 2D transition metal dichalcogenides (TMDs). The key idea is to use low-kinetic-energy dopant beams and a high-flux chalcogen beam simultaneously, leading to substitutional doping with controlled dopant densities. Atomic-resolution transmission electron microscopy has revealed that dopant atoms injected toward TMDs are incorporated substitutionally into the hexagonal framework of TMDs. The electronic properties of doped TMDs (Nb-doped WSe) have shown drastic change and type action with more than 2 orders of magnitude increase in current. Position-selective doping has also been demonstrated by the postdoping toward TMDs with a patterned mask on the surface. The postdoping method developed in this work can be a versatile tool for 2D-based next-generation electronics in the future.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.1c04584DOI Listing

Publication Analysis

Top Keywords

tmds
5
versatile post-doping
4
post-doping two-dimensional
4
two-dimensional semiconductors
4
semiconductors developed
4
developed simple
4
simple straightforward
4
straightforward realize
4
realize controlled
4
controlled postdoping
4

Similar Publications

The interfacial adhesion between transition metal dichalcogenides (TMDs) and the growth substrate significantly influences the employment of flakes in various applications. Most previous studies have focused on MoS and graphene, particularly their interaction with SiO/Si substrates. In this work, the adhesion strength of CVD-grown bilayer WS is directly measured using the nano scratch technique on three different substrates-Sapphire, SiO/Si, and fused quartz.

View Article and Find Full Text PDF

Monolayer transition metal dichalcogenides (TMDs) with strong exciton effects have enabled diverse light emitting devices, however, their Ångstrom thickness makes it challenging to efficiently manipulate exciton emission by themselves. Although their nanostructured multi-layer counterparts can effectively manipulate optical field at deep subwavelength thickness scale, these indirect band gap multi-layer TMDs are lack of strong luminescence, hindering their applications in light emitting devices. Here, the integration of monolayer TMDs is presented with nanostructured multi-layer TMDs, combining both strong exciton emission and optical manipulation in a single ultra-thin platform.

View Article and Find Full Text PDF

In doped semiconductors such as monolayer transition-metal dichalcogenides (TMDs), the optical properties are predominantly determined by exciton polarons, which are coherent superpositions of excitons and electron-hole excitation pairs in the Fermi sea. Here, we theoretically study the effect of exciton polarons on thermal radiation in doped two-dimensional semiconductors. By deriving an emissivity formula in terms of the dielectric function and the thickness of two-dimensional semiconductors, we show that the emissivity spectrum exhibits a narrow peak at the energy of an exciton polaron.

View Article and Find Full Text PDF

Latent membrane protein 1 (LMP1) plays a crucial role in Epstein-Barr virus (EBV)'s ability to establish latency and is involved in developing and progressing EBV-associated cancers. Additionally, EBV-infected cells affect the immune responses, making it challenging for the immune system to eliminate them. Due to the aforementioned reasons, it is crucial to understand the structural features of LMP1, which are essential for the development of novel cancer therapies that target its signaling pathways.

View Article and Find Full Text PDF

Recent Developments on 2D-Materials for Gas Sensing Application.

J Phys Condens Matter

December 2024

Department of Physics, IIT Jodhpur, NH 62, Karwar, Jodhpur, Jodhpur, Rajasthan, 342011, INDIA.

The industrialization has severely impacted the ecosystem because of intensive use of chemicals and gases, causing the undesired outcomes such as hazardous gases, e.g., carbon monoxide (CO), nitrox oxide (NOx), ammonia (NH3), hydrogen (H2), hydrogen sulfide (H2S) and even volatile organic compounds.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!