Enhanced Cathodic Electrochemiluminescence of Luminol on Iron Electrodes.

Anal Chem

Univ. Bordeaux, Bordeaux INP, CNRS, UMR 5255, Site ENSCBP, 33607 Pessac, France.

Published: December 2021

Electrochemiluminescence (ECL) behavior of luminol derivative was investigated in reduction on different electrode materials. We found that luminol and its widely used L-012 derivative, emitting at physiological pH values, exhibit strong cathodic ECL emission on iron and stainless steel electrodes with hydrogen peroxide, whereas no ECL signal was observed with other classic electrode materials (Au, Pt, and C). On a Ni electrode, a low cathodic ECL signal was observed. This points out to the essential role of iron-containing materials to enhance the cathodic ECL emission. Under the reported conditions, the cathodic ECL signal of L-012 is comparable to the classically used anodic ECL emission. Thus, dual bright ECL emissions with L-012 were obtained simultaneously in oxidation and in reduction on iron materials as imaged in a wireless bipolar electrochemistry configuration. Such an ECL system generating light emission concomitantly in oxidation and in reduction is extremely rare and it opens appealing (bio)analytical and imaging applications, in biosensing, remote detection, bipolar ECL analysis, and ECL-based cell microscopy.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.analchem.1c03139DOI Listing

Publication Analysis

Top Keywords

cathodic ecl
16
ecl emission
12
ecl signal
12
ecl
10
electrode materials
8
signal observed
8
oxidation reduction
8
enhanced cathodic
4
cathodic electrochemiluminescence
4
electrochemiluminescence luminol
4

Similar Publications

Enhanced Electrochemiluminescence from Ruthenium-Tagged Immune Complex at Flexible Chains for Sensitive Analysis of Glutamate Decarboxylase Antibody.

Biosensors (Basel)

January 2025

State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210092, China.

Herein, a sensitive electrochemiluminescence (ECL) immunosensor is designed by immobilizing ruthenium-tagged immune complexes at flexible poly-ethylene-glycol (PEG) chains on the electrode surface, which offers more freedom for the collision of the ruthenium complex at the electrode during the initial ECL reaction. The electrochemical characterizations confirm the loose structure of the assembled layer with the immune complex, providing an increase in the current and the resultant enhanced ECL emissions. Comparing the sensors with the rigid structure, a 34-fold increase in the maximal ECL emission is recorded when PEG3400 is used as a linker.

View Article and Find Full Text PDF

Highly electroactive thiazolium [5,4-d]thiazol-2,5-dicarboxylic acid-silver electrochemiluminescent metal-organic frameworks: synthesis, properties and application in glutathione detection.

Mikrochim Acta

January 2025

Key Laboratory of Synthetic and Natural Functional Molecule Chemistry (Ministry of Education), College of Chemistry & Materials Science, Northwest University, Xi' an, 710069, PR, China.

Thiazolo[5,4-d]thiazole-2,5-dicarboxylic acid (HThz), a thiazolothiazole (TTz) derivative with carboxylic acid groups, was synthesized as a ligand for the creation of five MOFs, each associated with distinct metal ions including Ag, Mn, Co, Zn, and Cu. The cathodic electrochemiluminescence (ECL) of HThz and the resulting MOFs was investigated. HThz was found to generate ECL signals, but this process was heavily reliant on potassium persulfate (KSO) as a co-reactant.

View Article and Find Full Text PDF

Oseltamivir is a drug that has been widely used to prevent and treat influenza A and B. In this work, an ultrasensitive, simple, and novel electrochemiluminescence (ECL) sensor combined with molecularly imprinted polymers (MIP-ECL) based on a graphene-like two-dimensional material, Mxene quantum dots (MQDs) was constructed to selectively detect oseltamivir. A molecularly imprinted polymer membrane containing an oseltamivir template was constructed by electropolymerization and elution of modified MQDs on a glassy carbon electrode.

View Article and Find Full Text PDF

Single-electrode electrochemiluminescence immunosensor for multiplex detection of Aquaporin-4 antibody using metal-organic gels as coreactant.

Biosens Bioelectron

March 2025

State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, No. 96 Jinzhai Road, Hefei, Anhui, 230026, China. Electronic address:

Reliable detection of Aquaporin-4 (AQP4) antibodies is crucial for diagnosing Neuromyelitis Optica spectrum disorder (NMOSD). However, cell-based assays, the most reliable approach, are limited by inadequate instruments. This study reports the use of silver metal-organic gels (Ag-MOGs) as coreactants in a single-electrode electrochemical system (SEES)-based electrochemiluminescence (ECL) immunosensor for multiplex detection of AQP4 antibodies.

View Article and Find Full Text PDF

Electrochemiluminescence (ECL) is nowadays a powerful technique widely used in biosensing and imaging, offering high sensitivity and specificity for detecting and mapping biomolecules. Screen-printed electrodes (SPEs) offer a versatile and cost-effective platform for ECL applications due to their ease of fabrication, disposability, and suitability for large-scale production. This research introduces a novel method for improving the ECL characteristics of screen-printed carbon electrodes (SPCEs) through the application of CO laser treatment following fabrication.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!