Tracking Stress Granule Dynamics in Live Cells and with a Small Molecule.

Anal Chem

Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.

Published: December 2021

Because of the lack of facile and accurate methods to track stress granule (SG) dynamics in live cells and , in-depth studies of the biological roles of this attractive membraneless organelle have been limited. Herein, we report the first small-molecule probe, , for the selective, convenient and real-time monitoring of SGs. This novel molecule can simultaneously bind to SG RNAs, the core SG protein G3BP1, and their complexes, triggering a significant enhancement in fluorescence intensity, making broadly applicable to SG imaging under various stress conditions in fixed and live cells, and . Using , the complicated endogenous SG dynamics were revealed in both live cells and . Collectively, our work provides an ideal probe that has thus far been absent in the field of SG investigations. We anticipate that this powerful tool may create exciting opportunities to investigate the underlying roles of SGs in different organisms.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.analchem.1c03577DOI Listing

Publication Analysis

Top Keywords

live cells
16
stress granule
8
granule dynamics
8
dynamics live
8
tracking stress
4
live
4
cells
4
cells small
4
small molecule
4
molecule lack
4

Similar Publications

Serum progesterone may increase prior to ovulation trigger in in vitro fertilization patients, jeopardizing endometrial receptivity and therefore live birth rate. Recombinant FSH (rFSH) promotes progesterone production from human granulosa cells. Yet, the role of FSH on progesterone production need deeper exploration.

View Article and Find Full Text PDF

In the developing mouse ventral spinal cord, HES5, a transcription factor downstream of Notch signalling, is expressed as evenly spaced clusters of high HES5-expressing neural progenitor cells along the dorsoventral axis. While Notch signalling requires direct membrane contact for its activation, we have previously shown mathematically that contact needs to extend beyond neighbouring cells for the HES5 pattern to emerge. However, the presence of cellular structures that could enable such long-distance signalling was unclear.

View Article and Find Full Text PDF

Lanthanide(III) complexes with two-photon absorbing antennas are attractive for microscopy imaging of live cells because they can be excited in the NIR. We describe the synthesis and luminescence and imaging properties of two Eu complexes, and , with (-carbazolyl)-aryl-alkynyl-picolinamide and (-carbazolyl)-aryl-picolinamide antennas, respectively, conjugated to the TAT cell-penetrating peptides. Contrary to what was previously observed with related Eu complexes with carbazole-based antennas in a mixture of water and organic solvents, these two complexes show very low emission quantum yield (Φ < 0.

View Article and Find Full Text PDF

Protocadherin 19 (PCDH19) is an adhesion molecule involved in cell-cell interaction whose mutations cause a drug-resistant form of epilepsy, named PCDH19-Clustering Epilepsy (PCDH19-CE, MIM 300088). The mechanism by which altered PCDH19 function drive pathogenesis is not yet fully understood. Our previous work showed that PCDH19 dysfunction is associated with altered orientation of the mitotic spindle and accelerated neurogenesis, suggesting a contribution of altered cytoskeleton organization in PCDH19-CE pathogenesis in the control of cell division and differentiation.

View Article and Find Full Text PDF

The beneficial properties of probiotics have always been a point of interest. Probiotics play a major role in maintaining the health of Gastrointestinal Tract (GIT), a healthy digestive system is responsible for modulating all other functions of the body. The effectiveness of probiotics can be enhanced by formulating them with prebiotics the formulation thus formed is referred to as synbiotics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!