Change in the dynamics of single-stranded DNA or RNA probes tethered to an Au electrode on immunospecific binding to the analyte is a versatile approach to quantify a variety of molecules, such as heavy metal ions, pesticides, proteins, and nucleic acids (NAs). A widely studied approach is the electrochemical beacon method where the redox of a dye attached to the probe decreases as its proximity to the underlying electrode changes on binding. The limit of quantification (LOQ) defined by the semilog dependence of the signal on target concentration is in the picomolar range. Here, a method was studied where, by differential reflectivity, multiple reactions were measured on a monolith electrode. An alternative contrast mechanism was discovered, which led to an approach to enhance the LOQ to 10 aM and increase the dynamic range to 7 orders of magnitude using similar probes and binding conditions. Quantitative analysis on sequences with the - fraction ranging from 37 to 72% was performed. The approach will allow for the development of a label-free, enzyme-free microarray to detect biomolecules including NAs and proteins on a single electrode at quantification from 10 aM to 0.1 nM with high specificity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9382887PMC
http://dx.doi.org/10.1021/acs.analchem.1c03020DOI Listing

Publication Analysis

Top Keywords

electrochemical beacon
8
beacon method
8
nucleic acids
8
dynamic range
8
range orders
8
orders magnitude
8
method quantify
4
quantify attomolar
4
attomolar nucleic
4
acids semilog
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!