A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Using k-mer embeddings learned from a Skip-gram based neural network for building a cross-species DNA N6-methyladenine site prediction model. | LitMetric

This study used k-mer embeddings as effective feature to identify DNA N6-Methyladenine sites in plant genomes and obtained improved performance without substantial effort in feature extraction, combination and selection. Identification of DNA N6-methyladenine sites has been a very active topic of computational biology due to the unavailability of suitable methods to identify them accurately, especially in plants. Substantial results were obtained with a great effort put in extracting, heuristic searching, or fusing a diverse types of features, not to mention a feature selection step. In this study, we regarded DNA sequences as textual information and employed natural language processing techniques to decipher hidden biological meanings from those sequences. In other words, we considered DNA, the human life book, as a book corpus for training DNA language models. K-mer embeddings then were generated from these language models to be used in machine learning prediction models. Skip-gram neural networks were the base of the language models and ensemble tree-based algorithms were the machine learning algorithms for prediction models. We trained the prediction model on Rosaceae genome dataset and performed a comprehensive test on 3 plant genome datasets. Our proposed method shows promising performance with AUC performance approaching an ideal value on Rosaceae dataset (0.99), a high score on Rice dataset (0.95) and improved performance on Rice dataset while enjoying an elegant, yet efficient feature extraction process.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11103-021-01204-1DOI Listing

Publication Analysis

Top Keywords

k-mer embeddings
12
dna n6-methyladenine
12
language models
12
prediction model
8
n6-methyladenine sites
8
improved performance
8
feature extraction
8
machine learning
8
prediction models
8
rice dataset
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!