In this paper is reported the selective detection and quantification of levodopa in co-presence of carbidopa. The method took advantage of the spontaneous oxidation and color development of levodopa at basic pH here driven by alkaline earth cations and co-solvent in solution. We have shown for the first time the generation and stabilization of the purple melanochrome from levodopa, by using magnesium acetate and dimethyl sulfoxide, which was here exploited for the development of a quantitative colorimetric assay for the active principle ingredient in commercial drugs for the treatment of Parkinson's disease. The calibration curves of levodopa in the two tablet formulations, containing carbidopa as decarboxylase inhibitor, showed a common linear trend between 10 mg L and 40 mg L with levodopa alone or in combination with carbidopa in standard solutions, with very good reproducibility (CV%, 3.3% for both brand and generic drug) and very good sensitivity, with limit of quantification about 0.6 mg L in any case. The colorimetric method here developed is very simple and effective, appearing as a rapid and low-cost alternative to other methodologies, involving large and expensive instrumentations, for drug estimation and quality control of pharmaceutical formulations.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00216-021-03804-8DOI Listing

Publication Analysis

Top Keywords

colorimetric assay
8
levodopa co-presence
8
co-presence carbidopa
8
levodopa
6
melanochrome-based colorimetric
4
assay quantitative
4
quantitative detection
4
detection levodopa
4
carbidopa
4
carbidopa application
4

Similar Publications

The abnormal expression of acetylcholinesterase (AChE) is linked to the development of various diseases. Accurate determination of AChE activity as well as screening AChE inhibitors (AChEIs) holds paramount importance for early diagnosis and treatment of AChE-related diseases. Herein, a fluorescent and colorimetric dual-channel probe based on gold nanoclusters (AuNCs) and manganese dioxide nanosheets (MnO NSs) was developed.

View Article and Find Full Text PDF

Dual DNAzyme amplification-based colorimetric sensing assay for the identification and quantification of tumor-associated miRNAs.

Talanta

December 2024

State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China. Electronic address:

Herein, we present a colorimetric sensing strategy for the identification and quantification of tumor-associated miRNAs based on dual DNAzyme amplification. In this sensing ensemble, the substrate portion of the Pb-dependent 8-17 DNAzyme combines with the G-quadruplex portion to form a hairpin substrate strand. The two split 8-17 DNAzyme strands are partially complementary to the substrate strand and serve as a recognition unit for binding the target miRNA.

View Article and Find Full Text PDF

Development of a dual-mode lateral flow assay based on structure-guided aptamers for the detection of capsaicin in gutter oils.

Biosens Bioelectron

December 2024

Teaching and Research Office of Food Safety, School of Public Course, Bengbu Medical College, Bengbu, 233000, China. Electronic address:

The construction of structure-guided aptamers and the ultra-sensitive aptamer-based lateral flow assays (Apt-LFA) integrated detection method hold significant potential for food analysis. Using an engineered modified sequence strategy, we successfully developed the aptamer Cap-1-2M4, significantly enhancing its affinity for capsaicin (CAP) to 0.6197 ± 0.

View Article and Find Full Text PDF

All-in-one microfluidic immunosensing device for rapid and end-to-end determination of salivary biomarkers of cardiovascular diseases.

Biosens Bioelectron

December 2024

School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315200, China. Electronic address:

Routine screening for cardiovascular diseases (CVDs) through point-of-care assays for at-home or community-based testing of salivary biomarkers can significantly improve patient outcomes. However, its translatability has been hindered by a dearth of biosensing devices that streamline assay procedures for rapid biomarker quantitation. To address this challenge through end-to-end engineering, we developed an in-house, all-in-one microfluidic immunosensing device that integrates on-chip vibration-enhanced incubation, magnetic-assisted separation using immune magnetic bead probes, and colorimetric readout via absorbance measurements.

View Article and Find Full Text PDF

YY1 drives PARP1 expression essential for PARylation of NONO in mRNA maturation during neuroblastoma progression.

J Transl Med

December 2024

Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei Province, People's Republic of China.

Background: Neuroblastoma (NB), the most prevalent solid tumor in children, arises from sympathetic nervous system and accounts for 15% of pediatric cancer mortality. This malignancy exhibits substantial genetic and clinical heterogeneity, thus complicating treatment strategies. Poly(ADP-ribose) polymerase 1 (PARP1), a key enzyme catalyzing polyADP-ribosylation (PARylation), plays critical roles in various cellular processes, and contributes to tumorigenesis and aggressiveness.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!