Cu diimine complexes present a noble metal free alternative to classical Ru, Re, Ir and Pt based photosensitizers in solution photochemistry, photoelectrochemical or dye-sensitized solar cells. Optimization of these dyes requires understanding of factors governing the key photochemical properties: excited state lifetime and emission quantum yield. The involvement of exciplex formation in the deactivation of the photoexcited state is a key question. We investigate the excited-state structure of [Cu(dmp)] and [Cu(dsbtmp)] (dmp = 2,9-dimethyl-1,10-phenanthroline, dsbtmp = 2,9-di--butyl-3,4,7,8-tetramethyl-1,10-phenanthroline) using pump-probe X-ray absorption spectroscopy (XAS) and DFT. Features of XAS that distinguish flattened tetrahedral site and 5-coordinated geometry with an additional solvent near Cu(II) center are identified. Pump-probe XAS demonstrates that for both complexes the excited state is 4-coordinated. For [Cu(dmp)] the exciplex is 0.24 eV higher in energy than the flattened triplet state, therefore it can be involved in deactivation pathways as a non-observable state that forms slower than it decays. For [Cu(dsbtmp)] the excited-state structure is characterized by Cu-N distances of 1.98 and 2.07 Å and minor distortions, leading to a 3 orders of magnitude longer excited-state lifetime.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d1cp02823e | DOI Listing |
Chem Sci
December 2024
Department of Physical Chemistry, University of Málaga, Andalucia-Tech Campus de Teatinos s/n 29071 Málaga Spain
The synthesis, electrochemical, spectroelectrochemical, photophysical and light induced electron transfer reactions in two new anthanthrene quinodimethanes have been studied and analyzed in the context of dynamic electrochemistry. Their properties are dependent on the interconversion between folded and twisted forms, which are separated by a relatively small energy range, thus allowing to explore their interconversion by variable temperature measurements. The photophysics of these molecules is mediated by a diradical excited state with a twisted structure that habilitates rapid intersystem crossing.
View Article and Find Full Text PDFProtein Sci
January 2025
Departament de Química, Universitat Autònoma de Barcelona, Barcelona, Spain.
Cyclooxygenase-2 (COX-2) plays a crucial role in inflammation and has been implicated in cancer development. Understanding the behavior of COX-2 in different cellular contexts is essential for developing targeted therapeutic strategies. In this study, we investigate the fluorescence spectrum of a fluorogenic probe, NANQ-IMC6, when bound to the active site of human COX-2 in both its monomeric and homodimeric forms.
View Article and Find Full Text PDFJ Phys Chem A
December 2024
Theoretical Chemistry Lab, Unit of Theoretical and Structural Physical Chemistry, Namur Institute of Structured Matter, University of Namur, Rue de Bruxelles, 61, Namur B-5000, Belgium.
The Doktorov's quantum algorithm has been enacted in combination with time-dependent density functional theory (TD-DFT) to simulate the vibronic structure of the UV/visible absorption spectra of the phenol and phenolate molecules. On the one hand, DFT and TD-DFT are employed with classical algorithms to calculate the ground and excited-state electronic structures as well as their vibrational frequencies and normal modes, whereas, on the other hand, quantum algorithms are employed for evaluating the vibrational transition intensities. In comparison to a previous study, , 128, 4369-4377, which demonstrated Doktorov's quantum algorithm as a proof of concept to predict the vibronic structure of ionization spectra, it is applied here to medium-size molecules with more than 30 vibrational normal modes, without accounting for Duschinsky rotations due to software limitations.
View Article and Find Full Text PDFJ Comput Chem
January 2025
Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Pisa, Italy.
We present a polarizable embedding quantum mechanics/molecular mechanics (QM/MM) framework for ground- and excited-state Complete Active Space Self-Consistent Field (CASSCF) calculations on molecules within complex environments, such as biological systems. These environments are modeled using the AMOEBA polarizable force field. This approach is implemented by integrating the OpenMMPol library with the CFour quantum chemistry software suite.
View Article and Find Full Text PDFChem Asian J
December 2024
Vidyasirimedhi Institute of Science and Technology, Frontier research center, THAILAND.
Excited-state intramolecular proton transfer (ESIPT) molecules are promising fluorophores for various applications. Particularly, their self-absorption-free fluorescence properties would make them a perfect choice as emissive materials for organic light-emitting diodes (OLEDs). Nevertheless, to become effective emitters some of their properties need to be altered by structural modifications.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!