A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Using Patient-Generated Health Data From Twitter to Identify, Engage, and Recruit Cancer Survivors in Clinical Trials in Los Angeles County: Evaluation of a Feasibility Study. | LitMetric

Using Patient-Generated Health Data From Twitter to Identify, Engage, and Recruit Cancer Survivors in Clinical Trials in Los Angeles County: Evaluation of a Feasibility Study.

JMIR Form Res

Southern California Clinical and Translational Science Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States.

Published: November 2021

Background: Failure to find and attract clinical trial participants remains a persistent barrier to clinical research. Researchers increasingly complement recruitment methods with social media-based methods. We hypothesized that user-generated data from cancer survivors and their family members and friends on the social network Twitter could be used to identify, engage, and recruit cancer survivors for cancer trials.

Objective: This pilot study aims to examine the feasibility of using user-reported health data from cancer survivors and family members and friends on Twitter in Los Angeles (LA) County to enhance clinical trial recruitment. We focus on 6 cancer conditions (breast cancer, colon cancer, kidney cancer, lymphoma, lung cancer, and prostate cancer).

Methods: The social media intervention involved monitoring cancer-specific posts about the 6 cancer conditions by Twitter users in LA County to identify cancer survivors and their family members and friends and contacting eligible Twitter users with information about open cancer trials at the University of Southern California (USC) Norris Comprehensive Cancer Center. We reviewed both retrospective and prospective data published by Twitter users in LA County between July 28, 2017, and November 29, 2018. The study enrolled 124 open clinical trials at USC Norris. We used descriptive statistics to report the proportion of Twitter users who were identified, engaged, and enrolled.

Results: We analyzed 107,424 Twitter posts in English by 25,032 unique Twitter users in LA County for the 6 cancer conditions. We identified and contacted 1.73% (434/25,032) of eligible Twitter users (127/434, 29.3% cancer survivors; 305/434, 70.3% family members and friends; and 2/434, 0.5% Twitter users were excluded). Of them, 51.4% (223/434) were female and approximately one-third were male. About one-fifth were people of color, whereas most of them were White. Approximately one-fifth (85/434, 19.6%) engaged with the outreach messages (cancer survivors: 33/85, 38% and family members and friends: 52/85, 61%). Of those who engaged with the messages, one-fourth were male, the majority were female, and approximately one-fifth were people of color, whereas the majority were White. Approximately 12% (10/85) of the contacted users requested more information and 40% (4/10) set up a prescreening. Two eligible candidates were transferred to USC Norris for further screening, but neither was enrolled.

Conclusions: Our findings demonstrate the potential of identifying and engaging cancer survivors and their family members and friends on Twitter. Optimization of downstream recruitment efforts such as screening for digital populations on social media may be required. Future research could test the feasibility of the approach for other diseases, locations, languages, social media platforms, and types of research involvement (eg, survey research). Computer science methods could help to scale up the analysis of larger data sets to support more rigorous testing of the intervention.

Trial Registration: ClinicalTrials.gov NCT03408561; https://clinicaltrials.gov/ct2/show/NCT03408561.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8665395PMC
http://dx.doi.org/10.2196/29958DOI Listing

Publication Analysis

Top Keywords

cancer survivors
32
twitter users
28
family members
24
members friends
24
cancer
18
survivors family
16
twitter
12
cancer conditions
12
social media
12
users county
12

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!