The images captured by vision-based tactile sensors carry information about high-resolution tactile fields, such as the distribution of the contact forces applied to their soft sensing surface. However, extracting the information encoded in the images is challenging and often addressed with learning-based approaches, which generally require a large amount of training data. This article proposes a strategy to generate tactile images in simulation for a vision-based tactile sensor based on an internal camera that tracks the motion of spherical particles within a soft material. The deformation of the material is simulated in a finite element environment under a diverse set of contact conditions, and spherical particles are projected to a simulated image. Features extracted from the images are mapped to the three-dimensional contact force distribution, with the ground truth also obtained using finite-element simulations, with an artificial neural network that is therefore entirely trained on synthetic data avoiding the need for real-world data collection. The resulting model exhibits high accuracy when evaluated on real-world tactile images, is transferable across multiple tactile sensors without further training, and is suitable for efficient real-time inference.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9595648 | PMC |
http://dx.doi.org/10.1089/soro.2020.0213 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou 363000, China.
Two-dimensional (2D) PtSe has attracted significant attention in recent years owing to its exceptional optoelectronic properties. Currently, the contact interface of the PtSe/bulk 2D-three-dimensional (3D) p-n heterojunction exhibits numerous defects. Moreover, the n-type bulk materials serve as a carrier transport layer, resulting in serious recombination losses and deterioration of device stability.
View Article and Find Full Text PDFNature
January 2025
Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, USA.
Accurate goal-directed behaviour requires the sense of touch to be integrated with information about body position and ongoing motion. Behaviours such as chewing, swallowing and speech critically depend on precise tactile events on a rapidly moving tongue, but neural circuits for dynamic touch-guided tongue control are unknown. Here, using high-speed videography, we examined three-dimensional lingual kinematics as mice drank from a water spout that unexpectedly changed position during licking, requiring re-aiming in response to subtle contact events on the left, centre or right surface of the tongue.
View Article and Find Full Text PDFJ Acoust Soc Am
December 2024
Department of Head and Neck Surgery, University of California Los Angeles, Los Angeles, California 90095-1794, USA.
Previous studies of laryngeal and respiratory control of the voice source often focus on main effects of individual control parameters but not their interactions. The goal of this study is to systematically identify important interaction effects in laryngeal and respiratory control of the voice source and vocal fold contact pressure in a three-dimensional voice production model. Computational simulations were performed with parametric variations in vocal fold geometry, stiffness, prephonatory glottal gap, and subglottal pressure.
View Article and Find Full Text PDFJ Exp Orthop
January 2025
Department of Orthopedic Surgery and Traumatology, Freiburg University Hospital Albert Ludwigs University Freiburg Freiburg Germany.
Introduction: The medial patellofemoral ligament (MPFL) is the main patellar stabilizer in low knee flexion degrees (0-30°). Isolated MPFL reconstruction (MPFLr) is therefore considered the gold standard of surgical procedures for low flexion patellofemoral instabilities (PFIs). Despite excellent clinical results, little is known about the effect of MPFLr on kinematic parameters (KPs) of the patellofemoral joint in vivo.
View Article and Find Full Text PDFBiomater Transl
September 2024
Orthopaedic Research Institute and Department of Orthopaedics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
Three-dimensional printed Ti-6Al-4V hemipelvic prosthesis has become a current popular method for pelvic defect reconstruction. This paper presents a novel biomimetic hemipelvic prosthesis design that utilises patient-specific anatomical data in conjunction with the Voronoi diagram algorithm. Unlike traditional design methods that rely on fixed, homogeneous unit cell, the Voronoi diagram enables to create imitation of trabecular structure (ITS).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!