Terrain Adaptability and Optimum Contact Stiffness of Vibro-bot with Arrayed Soft Legs.

Soft Robot

State Key Laboratory for Strength and Vibration of Mechanical Structure, School of Aerospace Engineering, Xi'an Jiaotong University, Xi'an, PR China.

Published: October 2022

The terrain adaptability of the state-of-the-art robot is far behind natural animals, partly because of limited sensing, intelligence, controlling, and actuating ability. One possible solution is to explore the flexible locomotion structure and locomotion mode with good adaptability and fault tolerance. Based on this idea, we presented a type of vibro-bot with arrayed soft legs (VBASL) with excellent terrain adaptability by utilizing the rapid vibration of the soft belt array. With the resistance to local terrain blocking and combing the vibrational actuation, the VBASL has an advantage of multi-leg collaboration, so that very simple structure can achieve good terrain adaptability, such as steady locomotion on complex terrains like steep slope, ladders, steps, discrete pillars, and soft sands. Besides, the effects of soft leg geometry, stiffness, and ground topography on terrain adaptability and locomotion speed were also studied, indicating the similar contact stiffness to maximize the locomotion speed on different grounds. Then, a theoretical model was developed to describe the experiments well, which can guide the design of optimum contact stiffness of VBASL to achieve fast locomotion speed and good load capacity. By further modifying the robot structure, more practical functions such as turning, climbing, and anti-impacting were easily realized. The resistance to local terrain blocking and optimum contact stiffness are two important factors to improve the performance of VBASL, which may address the terrain adaptability challenge of robots working in practical unstructured environments.

Download full-text PDF

Source
http://dx.doi.org/10.1089/soro.2021.0029DOI Listing

Publication Analysis

Top Keywords

terrain adaptability
24
contact stiffness
16
optimum contact
12
locomotion speed
12
terrain
8
vibro-bot arrayed
8
arrayed soft
8
soft legs
8
resistance local
8
local terrain
8

Similar Publications

For change detection in synthetic aperture radar (SAR) imagery, amplitude change detection (ACD) and coherent change detection (CCD) are widely employed. However, time-series SAR data often contain noise and variability introduced by system and environmental factors, requiring mitigation. Additionally, the stability of SAR signals is preserved when calibration accounts for temporal and environmental variations.

View Article and Find Full Text PDF

Research on RTD Fluxgate Induction Signal Denoising Method Based on Particle Swarm Optimization Wavelet Neural Network.

Sensors (Basel)

January 2025

College of Computer Science and Technology, Beihua University, No. 3999 East Binjiang Road, Jilin 132013, China.

Aeromagnetic surveying technology detects minute variations in Earth's magnetic field and is essential for geological studies, environmental monitoring, and resource exploration. Compared to conventional methods, residence time difference (RTD) fluxgate sensors deployed on unmanned aerial vehicles (UAVs) offer increased flexibility in complex terrains. However, measurement accuracy and reliability are adversely affected by environmental and sensor noise, including Barkhausen noise.

View Article and Find Full Text PDF

Terrain Traversability via Sensed Data for Robots Operating Inside Heterogeneous, Highly Unstructured Spaces.

Sensors (Basel)

January 2025

Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada.

This paper presents a comprehensive approach to evaluating the ability of multi-legged robots to traverse confined and geometrically complex unstructured environments. The proposed approach utilizes advanced point cloud processing techniques integrating voxel-filtered cloud, boundary and mesh generation, and dynamic traversability analysis to enhance the robot's terrain perception and navigation. The proposed framework was validated through rigorous simulation and experimental testing with humanoid robots, showcasing the potential of the proposed approach for use in applications/environments characterized by complex environmental features (navigation inside collapsed buildings).

View Article and Find Full Text PDF

To address the challenges of slow convergence speed, poor convergence precision, and getting stuck in local optima for unmanned aerial vehicle (UAV) three-dimensional path planning, this paper proposes a path planning method based on an Improved Human Evolution Optimization Algorithm (IHEOA). First, a mathematical model is used to construct a three-dimensional terrain environment, and a multi-constraint path cost model is established, framing path planning as a multidimensional function optimization problem. Second, recognizing the sensitivity of population diversity to Logistic Chaotic Mapping in a traditional Human Evolution Optimization Algorithm (HEOA), an opposition-based learning strategy is employed to uniformly initialize the population distribution, thereby enhancing the algorithm's global optimization capability.

View Article and Find Full Text PDF

Mountains with complex terrain and steep environmental gradients are biodiversity hotspots such as the eastern Tibetan Plateau (TP). However, it is generally assumed that mountain terrain plays a secondary role in plant species assembly on a millennial time-scale compared to climate change. Here, we investigate plant richness and community changes during the last 18,000 years at two sites: Lake Naleng and Lake Ximen on the eastern TP with similar elevation and climatic conditions but contrasting terrain.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!