Objectives: Omega 3 polyunsaturated fatty acids are dietary factors with several beneficial cardiovascular effects. This study aimed to assess the possible protective effect of omega 3 fatty acids on early doxorubicin-induced cardiac toxicity in children with acute lymphoblastic leukemia (ALL).

Patients And Methods: Sixty children of newly diagnosed ALL were randomized into two groups: group I (n = 30) who received omega 3 fatty acids 1000 mg/day for 6 months in addition to their usual protocol of chemotherapy including doxorubicin; and group II (n = 30) who received their usual doxorubicin protocol during the period from February 2020 till August 2021. Echocardiographic examinations were performed before and after the treatment. Glutathione, malondialdehyde (MDA), superoxide dismutase (SOD), troponin I, creatine kinase MB (CK-MB), and N-terminal pro-brain natriuretic peptide (NT-proBNP) were measured also before and after omega 3 treatment.

Results: After 6 months of omega 3 administration, group I had a significantly lower MDA level and a significantly higher glutathione and SOD levels than group II. Similarly, the levels of troponin I, CK-MB, and NT-proBNP were significantly high in group II, whereas they were unchanged in group I after treatment. Similarly, systolic function (presented with peak mitral annular systolic velocity and two-dimensional global longitudinal strain) of the heart was preserved in omega 3-treated patients, unlike the control group that showed significant impairment of left ventricular function after 6 months.

Conclusion: Omega 3 fatty acids may decrease early cardiac injury and doxorubicin-induced cardiotoxicity in children with ALL.

Download full-text PDF

Source
http://dx.doi.org/10.1002/pbc.29496DOI Listing

Publication Analysis

Top Keywords

fatty acids
20
omega fatty
16
omega
8
early doxorubicin-induced
8
doxorubicin-induced cardiotoxicity
8
cardiotoxicity children
8
children acute
8
acute lymphoblastic
8
lymphoblastic leukemia
8
group n = 30
8

Similar Publications

Biocatalytic oxyfunctionalization of unsaturated fatty acids to oxygenated chemicals via hydroxy fatty acids.

Biotechnol Adv

December 2024

Department of Food Science and Biotechnology, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-Gu, Seoul 03760, Republic of Korea.

The selective oxyfunctionalization of unsaturated fatty acids is difficult in chemical reactions, whereas regio- and stereoselective oxyfunctionalization is often performed in biocatalytic synthesis. Fatty acid oxygenases, including hydratases, lipoxygenases, dioxygenases, diol synthases, cytochrome P450 monooxygenases, peroxygenases, and 12-hydroxylases, are used to convert C16 and C18 unsaturated fatty acids to diverse regio- and stereoselective mono-, di-, and trihydroxy fatty acids via selective oxyfunctionalization. The formed hydroxy fatty acids or hydroperoxy fatty acids are metabolized to industrially important oxygenated chemicals such as lactones, green leaf volatiles, and bioplastic monomers, including ω-hydroxy fatty acids, α,ω-dicarboxylic acids, and fatty alcohols, by biocatalysts.

View Article and Find Full Text PDF

Background And Aims: Previous studies have yielded mixed results on the connection between dietary omega-3 and omega-6 intakes and the risk of hypertension (HTN) incidents. Therefore, we conducted a study to survey the connection between baseline dietary intake of omega-3, omega-6, and omega-6 to omega 3 (omega-6/3) fatty acids (FA) and the risk of hypertension.

Methods: We conducted a prospective cohort study and assessed dietary intake through a 118-item food frequency questionnaire (FFQ).

View Article and Find Full Text PDF

Ferredoxin 1 and 2 (FDX1/2) constitute an evolutionarily conserved FDX family of iron-sulfur cluster (ISC) containing proteins. FDX1/2 are cognate substrates of ferredoxin reductase (FDXR) and serve as conduits for electron transfer from NADPH to a set of proteins involved in biogenesis of steroids, hemes, ISC and lipoylated proteins. Recently, we showed that Fdx1 is essential for embryonic development and lipid homeostasis.

View Article and Find Full Text PDF

Restorative Effects of Short-Chain Fatty Acids on Corneal Homeostasis Disrupted by Antibiotic-Induced Gut Dysbiosis.

Am J Pathol

December 2024

International Ocular Surface Research Center, Key Laboratory for Regenerative Medicine, Institute of Ophthalmology, Jinan University, Guangzhou 510632, China; Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou 510630, China. Electronic address:

The gut microbiota plays a crucial regulatory role in various physiological processes, yet its impact on corneal homeostasis remains insufficiently understood. Here, we investigate the effects of antibiotic-induced gut dysbiosis (AIGD) and germ-free (GF) conditions on circadian gene expression, barrier integrity, nerve density, and immune cell activity in the corneas of mice. Through RNA sequencing, we found that both AIGD and GF conditions significantly disrupted the overall transcriptomic profile and circadian transcriptomic oscillations in the cornea.

View Article and Find Full Text PDF

A biohydrogen and polyhydroxyalkanoates(PHA)-producing natural photoheterotrophic mixed culture composed mainly by Rhodopseudomonas palustris and Clostridium sp was studied by a proteomic analysis under non-growth conditions (nitrogen-absence and organic acids). Proteins in C. pasteurianum were upregulated, particularly those related to stress response.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!