Recent advances in mass spectrometry have resulted in deep proteomic analysis along with the generation of robust and reproducible datasets. However, despite the considerable technical advancements, sample preparation from biospecimens such as patient blood, CSF, and tissue still poses considerable challenges. For identifying biomarkers, tissue proteomics often provides an attractive sample source to translate the research findings from the bench to the clinic. It can reveal potential candidate biomarkers for early diagnosis of cancer and neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, etc. Tissue proteomics also yields a wealth of systemic information based on the abundance of proteins and helps to address interesting biological questions. Quantitative proteomics analysis can be grouped into two broad categories: a label-based and a label-free approach. In the label-based approach, proteins or peptides are labeled using stable isotopes such as SILAC (stable isotope labeling with amino acids in cell culture) or by chemical tags such as ICAT (isotope-coded affinity tags), TMT (tandem mass tag) or iTRAQ (isobaric tag for relative and absolute quantitation). Label-based approaches have the advantage of more accurate quantitation of proteins and using isobaric labels, multiple samples can be analyzed in a single experiment. The label-free approach provides a cost-effective alternative to label-based approaches. Hundreds of patient samples belonging to a particular cohort can be analyzed and compared with other cohorts based on clinical features. Here, we have described an optimized quantitative proteomics workflow for tissue samples using label-free and label-based proteome profiling methods, which is crucial for applications in life sciences, especially biomarker discovery-based projects.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3791/61786 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!