Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Despite a wide range of proposed risk factors and theoretical models, prediction of eating disorder (ED) onset remains poor. This study undertook the first comparison of two machine learning (ML) approaches [penalised logistic regression (LASSO), and prediction rule ensembles (PREs)] to conventional logistic regression (LR) models to enhance prediction of ED onset and differential ED diagnoses from a range of putative risk factors.
Method: Data were part of a European Project and comprised 1402 participants, 642 ED patients [52% with anorexia nervosa (AN) and 40% with bulimia nervosa (BN)] and 760 controls. The Cross-Cultural Risk Factor Questionnaire, which assesses retrospectively a range of sociocultural and psychological ED risk factors occurring before the age of 12 years (46 predictors in total), was used.
Results: All three statistical approaches had satisfactory model accuracy, with an average area under the curve (AUC) of 86% for predicting ED onset and 70% for predicting AN BN. Predictive performance was greatest for the two regression methods (LR and LASSO), although the PRE technique relied on fewer predictors with comparable accuracy. The individual risk factors differed depending on the outcome classification (EDs non-EDs and AN BN).
Conclusions: Even though the conventional LR performed comparably to the ML approaches in terms of predictive accuracy, the ML methods produced more parsimonious predictive models. ML approaches offer a viable way to modify screening practices for ED risk that balance accuracy against participant burden.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1017/S003329172100489X | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!