A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A Bayesian approach for estimating the partial potential impact fraction with exposure measurement error under a main study/internal validation design. | LitMetric

AI Article Synopsis

  • The partial potential impact fraction measures how many disease cases could be prevented by changing people's modifiable behaviors while keeping other risk factors the same.
  • When exposure data is inaccurate, it can skew the estimates of this fraction, which means we need ways to fix these errors.
  • This study proposes a Bayesian method to adjust for these inaccuracies, particularly using data from the health professionals follow-up study, to accurately estimate the impact of changing diets on colorectal cancer rates.

Article Abstract

The partial potential impact fraction describes the proportion of disease cases that can be prevented if the distribution of modifiable continuous exposures is shifted in a population, while other risk factors are not modified. It is a useful quantity for evaluating the burden of disease in epidemiologic and public health studies. When exposures are measured with error, the partial potential impact fraction estimates may be biased, which necessitates methods to correct for the exposure measurement error. Motivated by the health professionals follow-up study, we develop a Bayesian approach to adjust for exposure measurement error when estimating the partial potential impact fraction under the main study/internal validation study design. We adopt the reclassification approach that leverages the strength of the main study/internal validation study design and clarifies transportability assumptions for valid inference. We assess the finite-sample performance of both the point and credible interval estimators via extensive simulations and apply the proposed approach in the health professionals follow-up study to estimate the partial potential impact fraction for colorectal cancer incidence under interventions exploring shifting the distributions of red meat, alcohol, and/or folate intake.

Download full-text PDF

Source
http://dx.doi.org/10.1177/09622802211060514DOI Listing

Publication Analysis

Top Keywords

partial potential
20
potential impact
20
impact fraction
20
exposure measurement
12
measurement error
12
main study/internal
12
study/internal validation
12
bayesian approach
8
estimating partial
8
health professionals
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!