Kunitz-type serine protease inhibitors are a class of ubiquitous protease inhibitors, which play important roles in various life activities. The structures of such inhibitors are generally stable, and are usually characterized by the presence of one or several Kunitz domains in tandem, which are able to bind to serine proteases in a manner similar to substrate binding, thereby inhibiting enzyme activity. In terms of function, Kunitz-type serine protease inhibitors are involved in processes such as blood coagulation and fibrinolysis, tumor immunity, inflammation regulation, and resistance to bacterial and fungal infections. This article summarizes the advances of Kunitz-type serine protease inhibitors and provides new ideas for the development of novel Kunitz-type serine protease inhibitors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.13345/j.cjb.200802 | DOI Listing |
Int J Biol Macromol
January 2025
School of Basic Medical Sciences, Kunming Medical University, Kunming 650500, Yunnan, China. Electronic address:
Most Kunitz inhibitors exhibit serine protease inhibitory activity, but limited information is available on the regulation of platelet function. Herein, we report the purification and characterization of a novel single Kunitz domain inhibitor (Sibanin) from the salivary glands of the black fly Simulium bannaense. Recombinant Sibanin prolonged activated partial thromboplastin time and prothrombin time, and exhibited high-affinity binding to FXa and elastase with a KD of 5.
View Article and Find Full Text PDFMol Cell Proteomics
December 2024
Institute for Cell Engineering, Division of Immunology, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA. Electronic address:
Animal venoms, distinguished by their unique structural features and potent bioactivities, represent a vast and relatively untapped reservoir of therapeutic molecules. However, limitations associated with comprehensively constructing and expressing highly complex venom and venom-like molecule libraries have precluded their therapeutic evaluation via high throughput screening. Here, we developed an innovative computational approach to design a highly diverse library of animal venoms and "metavenoms".
View Article and Find Full Text PDFMar Drugs
December 2024
Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 119997 Moscow, Russia.
TRPA1 is a homotetrameric non-selective calcium-permeable channel. It contributes to chemical and temperature sensitivity, acute pain sensation, and development of inflammation. HCIQ2c1 is a peptide from the sea anemone that inhibits serine proteases.
View Article and Find Full Text PDFToxins (Basel)
November 2024
Animal Toxin Group, Engineering Research Center of Active Substance and Biotechnology, Ministry of Education, College of Life Science, Chongqing Normal University, Chongqing 401331, China.
Kraits are venomous snakes of the genus from the family . Their venom typically demonstrates neurotoxicity; however, the toxicity is significantly influenced by the snake's species and geographical origin. Among the species, and have been poorly studied, with little to no information available regarding their venom composition.
View Article and Find Full Text PDFBiochem Biophys Res Commun
December 2024
Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, 2-3-2 Nakao, Asahi Ward, Yokohama, Kanagawa, 241-8515, Japan. Electronic address:
Tissue factor pathway inhibitor-2 (TFPI2) is a Kunitz-type serine protease inhibitor and an ovarian clear cell carcinoma (CCC) biomarker. TFPI2 is expressed in several cancers and exerts tumor-suppressive effects; however, the role of TFPI2 in the CCC cell phenotype remains unclear. Therefore, in this study, we investigated the function of TFPI2 by establishing a gene knockout (KO) in ES-2 CCC cells and observed the change in phenotypes in vitro and in vivo.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!