Biomolecule-Interactive Flexible Light Emitting Capacitor Display.

Small

School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore.

Published: January 2022

Ultrathin, lightweight, flexible, and conformable interactive displays that transduce external stimuli into human-readable signals are essential for emerging applications, such as wearable electronics, human-machine interfaces, and soft robots. Herein, a biomolecule-interactive flexible light emitting capacitor (LEC) display (BIO-LEC) capable of dynamic and quantitative visualization of biomolecules through naked-eye detectable electroluminescence (EL) emission is reported. BIO-LEC comprises a coplanar LEC light source at the bottom, and a designed microfluidic chip as sampling compartment at the top. The quantitative measurement feature of BIO-LEC is achieved by introducing the top liquid electrode, which possesses a unique long dielectric realization time, in the microfluidic chip. BIO-LEC is novel for the following reasons, 1) simple stimuli response principle based on correlating EL intensity to dielectric properties of the top liquid electrode; 2) simple test conditions whereby no labeling is required in the analyte solution to optically detect biomolecules; 3) effective sampling method through the design of an integrated microfluidic chip for hosting the top liquid electrode, ensuring good reproducibility and preventing contamination; 4) sensitive detection limit for heparin concentrations at clinically relevant levels, and 5) high compliance with industrial manufacturing standards.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.202103541DOI Listing

Publication Analysis

Top Keywords

microfluidic chip
12
top liquid
12
liquid electrode
12
biomolecule-interactive flexible
8
flexible light
8
light emitting
8
emitting capacitor
8
capacitor display
4
display ultrathin
4
ultrathin lightweight
4

Similar Publications

Tuberculosis (TB) is the second deadliest infectious disease worldwide. Current TB diagnostics utilize sputum samples, which are difficult to obtain, and sample processing is time-consuming and difficult. This study developed an integrated diagnostic platform for the rapid visual detection of Mycobacterium tuberculosis (Mtb) in breath samples at the point-of-care (POC), especially in resource-limited settings.

View Article and Find Full Text PDF

Vascularized human brain organoids: current possibilities and prospects.

Trends Biotechnol

January 2025

Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands. Electronic address:

Human brain organoids (hBOs) are in vitro, 3D, self-organizing brain tissue structures increasingly used for modeling brain development and disease. Although they traditionally lack vasculature, recent bioengineering developments enable their vascularization, which partly recapitulates neurodevelopmental processes such as neural tube angiogenesis, formation of neurovascular unit (NVU)-like structures, and early barriergenesis. Although vascularized hBOs (vhBOs) are already used to model (defects in) neurovascular development, vascularization efficiency and other outcomes differ substantially between vascularization protocols and overall shortcomings should be considered.

View Article and Find Full Text PDF

Rapid and accurate molecular diagnostics are crucial for preventing the global spread of emerging infectious diseases. However, the current gold standard for nucleic acid detection, reverse transcription polymerase chain reaction (RT-PCR), relies heavily on traditional magnetic beads or silica membranes for nucleic acid extraction, resulting in several limitations, including time-consuming processes, the need for trained personnel, and complex equipment. Therefore, there is an urgent need for fully integrated nucleic acid detection technologies that are simple to operate, rapid, and highly sensitive to meet unmet clinical needs.

View Article and Find Full Text PDF

An integrated magnetoimpedance biosensor microfluidic magnetic platform for the evaluation of the cardiac marker cTnI.

Anal Methods

January 2025

Microelectronic Research & Development Center, School of Mechatronics Engineering and Automation, Shanghai University, Shanghai 200444, China.

An integrated magnetoimpedance (MI) biosensor microfluidic magnetic platform was proposed for the evaluation of the cardiac marker, cardiac troponin I (cTnI). This bioanalyte evaluation platform mainly comprised three external permanent magnets (PMs), one MI element, two peelable SiO film units and a microfluidic chip (MFC). The MI element was made of micro-electro-mechanical system (MEMS)-based multilayered [Ti (6 nm)/FeNi (100 nm)]/Cu (400 nm)/[Ti (6 nm)/FeNi (100 nm)] thin films and designed as meander structures with closed magnetic flux.

View Article and Find Full Text PDF

Recent advances in microfluidic technology highlight electrowetting for its programmability and precision. However, traditional electrowetting chips face limitations in scalability due to fixed electrode sizes. Optoelectrowetting (OEW) offers a solution with light-controlled virtual electrodes, but droplet splitting remains challenging.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!